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One of the longstanding aims of network neuroscience is to link a connectome’s topo-
logical properties—i.e., features defined from connectivity alone–with an organism’s
neurobiology. One approach for doing so is to compare connectome properties with
annotational maps. This type of analysis is popular at the meso-/macroscale, but is
less common at the nano-scale, owing to a paucity of neuron-level connectome data.
However, recent methodological advances have made possible the reconstruction of
whole-brain connectomes at single-neuron resolution for a select set of organisms.
These include the fruit fly, Drosophila melanogaster, and its developing larvae. In
addition to fine-scale descriptions of connectivity, these datasets are accompanied by
rich annotations. Here, we use a variant of the stochastic blockmodel to detect multilevel
communities in the larval Drosophila connectome. We find that communities partition
neurons based on function and cell type and that most interact assortatively, reflecting
the principle of functional segregation. However, a small number of communities
interact nonassortatively, forming form a “rich-club” of interneurons that receive
sensory/ascending inputs and deliver outputs along descending pathways. Next, we
investigate the role of community structure in shaping communication patterns. We
find that polysynaptic signaling follows specific trajectories across modular hierarchies,
with interneurons playing a key role in mediating communication routes between
modules and hierarchical scales. Our work suggests a relationship between system-
level architecture and the biological function and classification of individual neurons.
We envision our study as an important step toward bridging the gap between complex
systems and neurobiological lines of investigation in brain sciences.

connectome | community structure | network neuroscience | network science | Drosophila

Introduction

Nervous systems are fundamentally networks (1, 2). They are composed of neural
elements–cells, areas, regions–linked to one another via synapses, axonal projections,
and myelinated white matter. The complete set of neural elements and their pairwise
connections defines a “connectome.” The configuration of the connectome as a network
helps shape brain activity and function.

A popular strategy for analyzing connectome data is to represent them as a graph
of nodes and edges (3). This simple model generally abstracts away neurobiological
detail, but returns the backbone of structural interactions, which can be further analyzed
using network science tools. Network science sits at the confluence of statistical physics,
engineering, and mathematics, and offers a wide range of tools for summarizing and
characterizing the structure and function of connectome data.

In principle, the network model is agnostic to scale; it is equally well-suited for
representing large-scale connectivity (regions/areas linked by fiber tracts/projections)
(4–6) as it is for representing cellular-level connectivity (synaptically coupled neurons) (7).
Network analyses have identified a number of phylogenetically conserved architectural
features of connectomes, including efficient processing paths coupled with greater-
than-expected clustering (small-worldness 8–11), heterogeneous degree distributions
and interlinked hubs (4, 12, 13), cost-efficient spatial embedding (14–16), and
neurobiologically meaningful subnetworks or modules (17, 18).

To date, however, most connectome analyses have focused on the macroscale, as
data can be acquired cheaply, noninvasively (diffusion MRI + tractography), and
for the entire brain at a single-subject level. Indeed, very few connectome datasets
exist at both the whole-brain and single-cell levels—the most notable being that of
the nematode Caenorhabditis elegans (7, 19, 20). Recently, however, methodological
advances have made it possible to reconstruct cellular-level connectivity for large volumes
(21–28). Importantly, reconstructions of synaptic connectivity are accompanied by rich,
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high-dimensional sets of neurobiological annotations, which are
seldom available for macroscale connectomes. These include
details of cells’ morphologies, types, and lineages, as well as
putative functional assignments, thus making it possible to
link high-level architectural features to fine-grained properties
of single neurons at the same spatial resolution at which
neurobiological processes unfold.

Here, we apply network science tools to the connectome
of the larval Drosophila melanogaster. Our focus is on its
community structure, which we uncover using an extension of
the classical stochastic blockmodel (SBM) (29, 30). We find
evidence of hierarchical community structure—communities
within communities—whose sizes range from tens to hundreds
of neurons. Community boundaries sharply delineate different
cell types from one another and circumscribe groups of cells with
shared functional profiles, e.g., proprioception, nociception, ol-
faction, and so on. Further, we show that while most communities
interact assortatively—i.e. form internally dense and externally
sparse subnetworks—a small fraction form nonassortative motifs
and that these communities are enriched for interneurons. Next,
we show that the larval Drosophila brain exhibits a “rich club”—a
collection of hubs neurons that are also mutually connected to
one another. We show that rich-club neurons, which tend to
be interneurons, are present in most coarse-scale modules, but
are also concentrated within a select set of “hub” modules, all
positioned in the midbrain. Last, we investigate the link between
community structure and communication policies, focusing on
shortest paths and communicability. We found that neurons
that were frequently assigned to the same community across
hierarchical levels were also more likely to have greater pairwise
communicability and reduced path length. Collectively, these
results recapitulate, in a whole-brain nano-scale connectome,
a set of architectural features that are largely conserved across
phylogeny and scale.

Results

Here, we analyze a previously published nano-scale connectome
for the D. melanogaster. The connectome is composed of N =
2,952 cells and approximately K = 352,611 synapses.

Hierarchical Community Structure. Connectomes are thought
to be modular, meaning that they can be decomposed into
meaningful subgraphs referred to as “communities.” Here, we
use a hierarchical variant of the SBM to partition the connectome
into nested communities (30). Unlike modularity maximization
(31) or Infomap (32), which are the most popular community
detection methods in network neuroscience but only capable of
detecting assortative community structure (internally dense and
externally sparse subgraphs), SBMs use an inferential framework
to detect generalized classes of communities, including core-
periphery and disassortative motifs (29, 30, 33–35) [though note
that the SBM can be constrained to detect purely assortative
partitions (36)]. In addition, the SBM does not suffer from over-
fitting issues that permit methods like modularity maximization
and Infomap to detect communities in random networks (37).

To obtain an estimate of hierarchical communities, we used the
procedure described in ref. 38 to sample a large number of high-
quality partitions (10,000 samples) and identify latent modes.
We found evidence supporting the hypothesis that there is exactly
one mode. Here, we characterize the consensus estimate of that
partition. The optimal partition resulted in seven hierarchical
levels, dividing the network into 2, 4, 6, 10, 20, 36, and 77
communities (Fig. 1 A–C ). For the sake of visualization, we

focus on the fourth hierarchical level. In Fig. 1D, we visualize
these communities, coloring neurons, and their morphological
trees based on the community to which they were assigned.
We note, however, that these ten communities can be both
subdivided and aggregated further. We show in Fig. 1E examples
of communities in the fourth hierarchical level that fracture
into two or three smaller communities in the fifth level. For
alternative visualizations of the different hierarchical levels and
for a qualitative assessment of the link to synapse type-specific
connectomes, see SI Appendix, Figs. S1 and S2, respectively.

Next, we aimed to characterize the profile of communities
across hierarchical levels. As expected, the size of communities–
the number of nodes assigned to a given community–decreased
monontonically with hierarchical level (Fig. 2A). In parallel,
the synaptic and binary densities of communities increased
across hierarchical levels (Fig. 2 B and C ), suggesting that these
communities become more internally cohesive.

Next, we examined the spatial properties of communities. We
found that the mean and maximum pairwise (Euclidean) distance
between soma decreased near-monotonically across hierarchical
levels (Fig. 2 D and E). We note, however, that there were several
outliers—communities whose diameter was far greater than the
typical community. These communities were composed largely
of sensory neurons in the nerve cord associated with respiratory,
gut, and gustatory function (Fig. 2 F and G).

In SI Appendix, we further investigated spatial properties of
the connectome. One of the organizing principles of interareal
connectomes is the exponential distance rule (EDR), wherein
connection weight decays approximately as an exponential
function with interareal Euclidean distance (39, 40). However,
whether this rule holds at the nano-scale remains largely untested.
To address this question, we examined how the distances between
cells were related to their synapse counts (SI Appendix, Fig. S3).
When the EDR is described in interareal connectome studies,
distance is operationalized as the Euclidean distance between
areal centers of mass. Accordingly, we considered soma–soma
distance as a distance metric. However, synaptic contacts between
neurons are often distant from their respective soma, such that
two spatially adjacent neurons connect a long distance away from
their cell bodies. Therefore, we also defined a second distance
metric that takes into account synapse location. For a pre- and
postsynaptic neuron, we calculated the shortest path through
their arbors from their respective soma to the location of the
synapse. We then calculated the wiring cost along the shortest
path as a measure of distance. If two neurons were connected via
multiple synapses, we identified the union of their shortest paths
(the shortest paths backbone) and calculated the Euclidean dis-
tance along all arboral segments comprising said backbone. See SI
Appendix, Fig. S4 for a direct comparison of these two measures.

In general, we found that although connection probability
decayed with soma–soma distance (SI Appendix, Fig. S3E),
synapse count was not correlated with soma–soma Euclidean
distance (r = −0.0015; SI Appendix, Fig. S3C ) but was positively
correlated with the shortest path distance (r = 0.24; P < 10−15;
SI Appendix, Fig. S3D). We also found that the correlation
between synapse count and wiring cost along the shortest path
was cell-type specific (SI Appendix, Fig. S3 G–I ).

These results suggest that a simple exponential distance rule
may not hold at the level of neuron-to-neuron connectivity.
However, if we coarse-grain the network into parcels, we find
that connection weights exhibit a negative relationship with
distance—both soma–soma distance and wiring cost along the
shortest path—that is modulated by the level of granularity.
Coarse representations–tens or hundreds of clusters—exhibit
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Fig. 1. Detected hierarchical modular structure. (A) Hierarchical dendrogram. Each column corresponds to a hierarchical level. Colors correspond to
communities at the finest hierarchical level (level five). At coarser levels, they are grouped into larger communities. (B) Community coassignment matrix.
Entries correspond to the number of levels in which pairs of neurons were assigned to the same community. Red lines separate level four communities from
one another. (C) Connectivity matrix with rows/columns ordered by communities. Panel (D) depicts level-four communities in anatomical space. Communities
can, in general, be subdivided or even aggregated into larger clusters. Panel (E) highlights divisions of select communities in the fourth hierarchical level into
smaller subcommunities in level five.

strong anticorrelations (SI Appendix, Fig. S3F ). However, as
k → N , the correlation magnitude increases, approaching 0 in
the case of soma–soma distance and≈0.24 in the case of distance
along the shortest path. These observations suggest that, at single-
neuron resolution, the effect of straight-line distance on synapse
count is small and possibly inappropriate—i.e. there are better
measures of distance that are predictive of synapse count (41).

In addition to the SBM, we also tested a hierarchical variant
of modularity maximization, the results of which we report in
SI Appendix, Fig. S5. Despite differences in objective function
and optimization heuristic, the communities detected using both
techniques are similar (SI Appendix, Fig. S6), yielding correlated
enrichment scores (SI Appendix, Fig. S7). We also compared
the partitions obtained using the SBM with a subset of the
partitions reported in ref. 21 (SI Appendix, Fig. S10). In general,
we found that our solutions were neither perfectly aligned with
those clusters, nor were they wildly dissimilar. Last, we also fit the
connectomes comprising only axon→axon, axons→dendrite,
dendrite→axon, and dendrite→dendrite synapses (SI Appendix,
Fig. S11). Overall, we found that communities inferred from the
axon→axon and axons→dendrite connectomes were most sim-
ilar to the results described here and that the dendrite→dendrite
connectome exhibited marked laterality.

Linking Communities to Cell Types and Function. In the pre-
vious section, we described a set of hierarchical modules and
their properties. How do these modules and their boundaries

relate to cellular annotations? Do they “carve nature at its
joints” such that modules circumscribe specific types of cells or
functions? Or are annotations intermixed evenly across modules?
At the meso-/macroscale, this question can only be approximately
addressed by averaging cellular or population-level annotations
to generate parcel-based maps (42). Here, however, we take
advantage of the fact that communities and annotations are both
defined at the single-neuron scale, allowing for direct comparison.
Specifically, we asked whether connectivity-defined communities
were “enriched” for different types of annotations: neurons
associations with specific functions, cell types, and neuron class
(e.g., input, output, interneuron) (43). We calculated the overlap
of each annotation and community—e.g., the number of nodes
labeled as Kenyon cells that were also assigned to community C
and compared against a null distribution generated under a null
model that preserves the spatial variogram (44) (Fig. 3A).

We found that communities exhibited both a high level of
enrichment and also a high degree of specificity in terms of
annotations (see Fig. 3B for raw overlap scores and Fig. 3F for
normalized overlap, i.e. z-scores). This is interesting, as com-
munities were defined only on the basis of synaptic connectivity
using a data-driven algorithm. Virtually every function had a clear
correspondence with a community. Community 9 was associated
with proprioception; community 8 was dually associated with no-
ciception and chordotonal mechanosensation; community 5 was
associated with vision and gustation; communities 3 and 4 were
jointly associated with gustation, thermosensation, and olfaction;
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Fig. 2. Community statistics across hierarchical levels. (A) Community size (number of nodes). (B) Log synaptic density—number of synapses divided by total
number of possible connections within each community. (C) Log binary density—number of connections divided by total number of possible connections. (D)
Community diameter—longest distance (Euclidean) between pairs of nodes assigned to the same community. (E) Mean distance between pairs of nodes. At
each hierarchical level, there were clear outliers in terms of maximum distance (red circles in panel D). In panel (F ), we break down the cell type and functional
composition of those communities. In panel (G), we show the anatomical configuration of those communities. In general, they are composed of ascending
sensory projections that support gustatory, gut, and respiratory function.

community 6 was associated with gut, respiration, and gustation;
community 7 was associated with class II mechanosensation, gut
function, and respiration. Interestingly, communities 1, 2, and
10, which were among the smallest and spatially compact, were
composed mostly of interneurons and not clearly aligned with
any sensorimotor function.

Similarly, cell types (and by extension, the broader cell
classes/groups to which cell types were assigned) were also signifi-
cantly enriched within communities. For example, communities
1 and 8, which were poorly aligned with functional annotations,

were highly enriched for different classes of interneurons, with
community 1 aligned with Kenyon cells and mushroom body
output neurons and community 8 aligned with mushroom body
input, output, and fan-shaped neurons (see Fig. 3C and D for
raw overlap; Fig. 3G and H for z-scored enrichment scores).

We also linked connectional properties of communities
with function, class, and cell type. Specifically, we calculated
“community motifs”, which describe how pairs of communities
interact with one another (34). Every pair of communities can
be represented as a [2 × 2] matrix, whose diagonal elements

Fig. 3. Communities are “enriched” for function, cell type, and cell group. (A) Schematic illustrating how we measure overlap. Given two partitions of cells—e.g.,
one coming from data-driven community labels and another coming from annotation data—we calculate the overlap as the union of the two. Panels (B–D)
show the overlap (counts) for each community and for different functional groups, cell types, and macro-cell group labels. (E) The counts are, in general,
confounded by community and annotation size—larger maps will, just by chance, tend to have greater overlap with one another. To control for this, we use a
space-preserving null model to calculate the expected overlap for each entry in the arrays depicted in panels (B–D), and z-score the observed overlap scores
with respect to the null distributions. Panel (E) illustrates this procedure. This allows us to contextualize the scores shown in panels (B–D)—entries with greater
overlap than expected signify that a community may be “enriched” for a given function, cell type, or macro-cell group. Panels (F–H) report “enrichment scores”
of the raw counts depicted in panels (B–D).
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Fig. 4. Community motifs distinguish function, cell type, and macro-cell group from one another. (A) Example community interaction motifs. Assortative
interactions correspond to “internally dense—externally sparse” communities; “core-periphery” interactions involve a densely connected core that is linked to
a sparse periphery; “disassortative” communities form cross-community links, seldom connecting nodes of the same community to one another. (B) Density
matrices for the community interaction motifs discussed in (A). (C) Proportion of all two-community motifs classified as either assortative, core-periphery,
or disassortative. (D) Anatomical depiction of the most assortative and nonassortative neurons and their arbors. (E) Enrichment (z-score) of assortative,
disassortative, core, periphery, and diversity indices within function, cell type, and macro-cell group labels.

correspond to the within-community synaptic densities and
the off-diagonal elements correspond to the synaptic density of
incoming/outgoing connections. Based on these four elements,
the interactions between every pair of communities can be
classified as assortative, core-periphery, or disassortative (Fig. 4A
and B).

Here, we categorize the interaction between every pair of
communities and map these labels back to individual network
nodes. This procedure is carried out independently for each
hierarchical level, the scores ranked, and then averaged across
levels to yield a single assortativity, core, periphery, and disassor-
tativity score per neuron. Note that for core-periphery motifs,
we distinguish between the community that acts as the “core”
and the community that acts as the “periphery”. Based on these
labels, we also calculated an entropy-based “diversity index”
whose value is close to 1 if a node participates uniformly in
all four classes and is close to 0 if it participates in only a single
class. For the sake of visualization, we group the non-assortative
labels (core, periphery, and disassortative) together to form a
“non-assortative” class (Fig. 4C ). We then performed another
enrichment analysis, this time testing whether community motif
values were significantly concentrated within functional, cell type,
and cell class groups.

We found, in line with other applications of the stochastic
blockmodel to brain network data, that most communities
interact assortatively (34, 35). Specifically, 94% of interactions
are assortative, with only 4% and 2% classified as core-periphery
and disassortative, respectively (Fig. 4C and D). Interestingly,
we found that motif classes were enriched within functional
groups, cell types, and cell classes. For example, assortative motifs
were highly enriched within output neurons, namely descending
neurons in the ventral nerve cord associated with proprioception,
nociception, and chordotonal mechanosensation (Fig. 4E). Note
that this analysis only implies that the level of assortativity within
these groups was greater than expected by chance; it does not
imply that these groups were the only groups that participated
in assortative community motifs. Conversely we found that
interneurons specifically were enriched for the non-assortative
community motifs—i.e. disassortativity and coreness—and were,
in general, among the most diverse in terms of their motif-type
participation (Fig. 4D and E).

Collectively, these results support they hypothesis that the
Drosophila larval connectome exhibits hierarchical modular struc-
ture. These communities tend to be assortative and, though data-
driven, neatly divide cells into groups based on their type, class,
and function. Further, communities occasionally deviate from
assortative interactions; the cells that make up these communities
tend to be interneurons, supporting the hypothesis that the most
assortative and segregated communities support specialized brain
function.

Rich-Club Structure. Another hallmark feature of brain networks
is that their degree distributions tend to be heavy-tailed,
signifying that most neural elements maintain few partners, but
that a small number make disproportionately many connections.
In other brain networks datasets, these highly connected nodes
sometimes form a “rich-club” (45–47), wherein hub nodes
are more densely connected to one another than expected by
chance (12, 13). Rich-clubs are thought to support intermodular
communication–human studies have found that rich-club nodes
are distributed across cortical modules (48), though other studies
using blockmodels to define communities have shown that rich-
clubs can form their own, separate community (49). Here, we test
whether the larval Drosophila connectome exhibits a rich-club
and, if so, assess how it interlinks communities to one another
and its relationship to known functional classes and cell types.

Specifically, we calculated the directed rich-club coefficient,
�(k), at every degree, k. We then repeated this procedure
for 1,000 randomized networks whose in-/out-degree sequences
were identical to that of the original network but where the con-
nections were otherwise formed at random (50). Then, for each
value of k, we calculated the nonparametricP-value as the fraction
of randomized networks whose rich-club coefficient was equal or
greater to that of the original network (Fig. 5A). We identified
a range of statistically significant rich-clubs, but focused on the
local maxima in the normalized rich-club coefficient at k = 172.

We found that rich-club nodes were distributed across
8/10 communities at the fourth hierarchical level (albeit only
barely; community 7 included only 1 rich-club node rich-
club connection) (Fig. 5 B–D). However, rich-club nodes were
largely concentrated within four communities (1, 2, 9, and 10),
whose constituent members were among the most connected
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Fig. 5. Rich-club structure. (A) Empirical rich-club coefficient (red) compared to randomized null models (blue). We focus on the statistically significant rich-club
at k = 172 (combined in-/out-degree). (B) Concentration of rich-club connections (connections that link a rich-club node to another rich-club member. (C)
Composition of rich-club by communities. Colors correspond to level two communities; area is proportional to the percentage of the rich-club that comes from
each community. (D) Anatomical representation of rich-club nodes and their arbors. (E) Enrichment of function, cell type, and macro-cell group within rich-club
labels (part of rich-club and not part of rich-club).

in the network as indexed by degree (SI Appendix, Fig. S8).
We also tested whether rich-club membership was linked to
specific function, cell types, or cell groups using the same
enrichment analysis described in the previous section. We found
that interneurons, specifically Kenyon cells and a subset of cells in
the mushroom body [input, output, and feedback neurons (51)],
were preferentially associated with rich-club status (P < 10−15;
Fig. 5E).

We also used information about synapse type to fur-
ther decompose and characterize the rich-club (SI Appendix,
Fig. S12). We found that “rich” connections (links between
two rich-club neurons) were most likely to be axon→axon
and axon→dendrite synapses, reflecting the fact that these
two synapse types were also the most common (SI Appendix,
Fig. S12B). However, when we controlled for baseline rate,
we found that axon→axon synapses were significantly over-
represented while axon→dendrite synapses were significantly
underrepresented (permutation test; P < 0.01). Interestingly,
for more exclusive rich-clubs (k > 172) we find evidence
that dendrite→axon and axon→dendrite synapses are slightly
overrepresented relative to their baseline rate (SI Appendix, Fig.
S12C ), suggesting that these synapses may be important for
signaling among highly connected, hub neurons.

Collectively, these results indicate that the Drosophila con-
nectome exhibits rich-clubs—groups of highly connected cells
that are also connected to one another. Here, the rich-club was
detected in a data-driven way but overlaps with known cell types
that have been linked to associative learning and memory (52).

Role of Network Modules in Communication Processes. Con-
nectomes represent the pathways along which signals propagate.
Communication between neurons can be understood as the
process by which a “signal” from a source node reaches a prespec-
ified target (53, 54). These types of processes can be modeled
using tools from network science. Typically, communication
models are situated along a spectrum, ranging from centralized
processes like shortest paths routing, in which the message follows
the shortest possible path from its source to target, ensuring
maximum efficiency, to decentralized processes like diffusion

(55, 56), navigation (57), and cascade models (58). Here, we
explore communication processes unfolding over the Drosophila
connectome. Although the set of possible communication poli-
cies is vast (59, 60), we restrict our analyses to the following
three: “binary shortest paths” (Fig. 6A), “weighted shortest
paths” (Fig. 6B), and “weighted and directed communicability”
(Fig. 6C ). See SI Appendix for more details on these measures.

We calculated these measures for every pair of nodes, generat-
ing N × N network communication matrices. For every pair of
nodes, we calculated the number of hierarchical levels in which
they were assigned to the same community (Fig. 6D) and linked
those values to the three aforementioned measures (Fig. 6 E–H ).

In general, we found that if nodes were assigned to the same
community at any level of the hierarchy, their shortest path
length and communicability tended to be less than nodes that
were never in the same community (t test, P < 10−15; Fig. 6
I, K, and L). Note, however, that we did not find this effect
when we examined the cost matrix (Fig. 6J ). We also found
that hop distance and communicability decrease and increase
monotonically with hierarchical levels, respectively, such that
nodes assigned to the same community across all hierarchical
levels tend to be connected via fewer hops and their walk density
(indexed by communicability) was larger compared to those that
appeared in communities less frequently (t test; P < 10−15;
Fig. 6 I–L). Taken together these results recapitulate well-
established links between network modules and communication
in the larval Drosophila connectome.

Linking Shortest-Path Trajectories to Community Hierarchy.
In the previous section, we showed that community hierarchy
is, in aggregate, related to measures of communication. Here,
we investigate those relationships in greater detail, focusing on
shortest path trajectories from source to target nodes, detailing
edge usage relative to nodes’ positions in the community
hierarchy.

Specifically, we calculated the module coassignment matrix so
that every pair of nodes was assigned a value between 0 and 7
depending on the number of hierarchical levels in which they
were assigned to the same module. We then “masked” the coas-
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Fig. 6. Linking processing paths to hierarchical community structure. (A) Schematic illustrating example path and shortest path between source and target
nodes in a binary network. (B) Example of shortest weighted path. Note that weights are typically transformed from measures of affinity to measures of
cost in the estimation of shortest weighted paths. Note also that the shortest weighted path may include more hops than the shortest binary path. (C)
Illustration of walks of different lengths. Communicability counts and sums the number walks of all lengths between pairs of nodes, exponentially discounting
the contributions from longer walks. (D) Hierarchical community coassignment matrix. Elements range from 0 (pairs of nodes never assigned to the same
community at any level of the hierarchy) to 1 (assigned to the same community at every level). Panels (E–H) depict the binary shortest path, weighted shortest
path (cost), weighted shortest path (hop count), and communicability between all pairs of nodes. For binary and weighted shortest paths, we find mean, mode,
and maximum shortest paths of 3.28, 3, and 15 and 5.97, 5, and 23 hops, respectively (note that for the weighted shortest path, the quantity to be is minimized
is not hop length, but a measure of cost estimated from connections’ weights). Panels (I–L) compare mean hop count, weighted shortest path (cost and hop
count), and communicability between nodes at different levels of the community hierarchy.

signment matrix with the binarized connectivity matrix, setting
to zero all entries in the coassignment matrix corresponding to
pairs of nodes that were not directly connected (Fig 7A). Using
this relabeled matrix, we tracked how often and where edges
with labels 0, 1, 2, 3, 4, 5, 6, and 7 appeared in shortest paths.
Finally, for paths of all lengths, L, we calculated the typical
trajectory with respect to edge labels, which reveals how shortest
paths travel across modular hierarchies on their way from a
source to a target cell (Fig. 7B). Note that this approach is
similar to the model studied in ref. 21, wherein “seed neurons”
probabilistically activate their postsynaptic partners, creating
“cascades” of activation that propagate across the connectome.
Using that model, the authors characterized the timing of
activations. Here, we focus on shortest path structure, which
represents an extreme case of the cascade model, corresponding to
a 100% probability of activating postsynaptic partners. A further
distinction between shortest paths and the cascade model is that
neurons in the cascade model can enter a “deactivated” state
following its own activation, wherein the neuron cannot activate
its postsynaptic neighbors.

We found that, irrespective of path length, shortest path
trajectories tend to be initiated using edges that link to nodes
in the same community as source node, advance to cross-
community edges, before once again traveling along within-
module connections near the vicinity of the target node. These
trajectories give rise to a characteristic “u-shape.” However, these
characteristic trajectories are estimated by averaging over all
pairs of source and target nodes, collapsing across considerable

variation. How much do trajectories vary when the source and tar-
get nodes are selected based on specific annotational properties?
To address this question, we estimated typical trajectories when
the source/target nodes have different cell types, communities,
functional profiles, and macro-cell groupings (Fig. 7 C–E).

Interestingly, we found heterogeneity across source/target
types. For instance, Kenyon cells (KC)—a class of interneuron—
deviated considerably from the characteristic u-shaped trajectory.
As sources, they followed an increasing and near-linear trajectory,
so that the initial step in the shortest path, rather than linking to
another node in the same module, immediately takes advantage
of cross-community connections. The rest of the shortest path
is composed of an “ascent” toward the target, using edges that
were increasingly likely to link nodes in the same community
(Fig. 7 D, Left). We observed a similar, but opposite, trajectory
for shortest paths where Kenyon cells were the target (Fig. 7F ).

In contrast, neurons associated with sensation (sensory neurons
in Fig. 7 D and E) followed a trajectory opposite that of Kenyon
cells. These cells, along with descending and ascending neurons
in the ventral nerve cord, are enmeshed within segregated and
assortative modules. As sources, the first steps on their shortest
paths tend to be to other cells in the same group, eventually
reaching cells that make cross-module connections and ascending
via within-module connections toward the target neuron.

What explains the variation in shortest path trajectories? One
hint comes from the trajectories of cell groups. Interneurons,
which include KCs, follow monotonically increasing and de-
creasing pathways when they are grouped by source and target,
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Fig. 7. Shortest path trajectories. (A) Masked connectivity matrix. Edges are labeled based on coassignment probability: 0, 1, 2, 3, 4, and 5 indicate the number
of hierarchical levels that a given pair of connected nodes were assigned to the same community. (B) We can then describe the composition of the shortest path
from a given source node to a given target node in terms of the coassignment probabilities of the edges along that path. As an example, we show all shortest
paths of length L = 10. (C) We then calculated the typical trajectory as the mean across all shortest paths, which revealed a characteristic u-shaped trajectory.
That is, the first hops away from a source node tend to be to other nodes in the same community as the source node, followed by a series of cross-community
hops, before terminating through a series of within-community hops as the shortest path approaches the target node. Panel (C) shows the characteristic
trajectory averaged over all source/target pairs for L = 2 to L = 15 (there were very few shortest paths beyond this length and, for brevity, we ignore them).
We then asked how these shortest path trajectories varied across cell types, communities, functional annotations, and macro-cell groups. We found that, while
most shortest paths follow a general u-shape, a subset deviate from this shape. For instance, shortest paths originating from Kenyon cells almost immediately
begin using between-community connections to leave their local community, followed by a quick “ascension” along edges that fall within communities (D). We
find an opposite trajectory when we average only shortest paths that end with Kenyon cells (E). These effects can be explained by two observations. Kenyon cells
are interneurons and, like other interneurons, tend to be high degree. We find that groupings that deviate from the u-shaped trajectory are both dominated by
interneurons and exhibit high average degree (C). Panel (E) shows average trajectory for each annotation, where each annotation is a source. Panel (F ) shows
the same information, but where each annotation is a target.

deviating from the characteristic u-shaped trajectory (Fig. 7B).
Indeed, we find that the percentage of interneurons in each
group, with the exception of functional annotations, is largely
in agreement with the ordering of trajectories, from those that
are similar to the trajectories of Kenyon cells to those that are
more u-shaped (Fig. 7C, red curve). This observation suggests
that the cell type composition of groups, namely the fraction of
cells labeled as interneurons, helps determine the extent to which
their respective trajectories deviate from the grand average.

What network property (properties) do interneurons exhibit
that might explain this phenomenon? Interneurons tend to
be high degree—i.e. they maintain relatively high numbers of
incoming/outgoing connections. This aligns with the earlier
observations that rich-clubs and core-periphery structures are
enriched for interneurons. From the perspective of shortest paths,
by virtue of being high-degree and nonassortative, interneurons
can use intermodular connections to rapidly hop from their
own module to another (unlike input and output neurons,
which form largely assortative structures and whose initial steps

along shortest paths tend to be to other neurons in the same
module).

As a final analysis, we assessed to what extent the u-shaped
trajectories could be attributed to community structure alone,
or if their shape and variation revealed something distinct about
the organization of the connectome. To address this question,
we sampled networks from the fitted SBM (100 repetitions). For
each sampled network, we repeated the above analyses. We found
that the shortest paths of the sampled networks also exhibited u-
shaped trajectories consistent with those previously reported (SI
Appendix, Fig. S14). Further, we also find that, given these null
models, we recover the functional, cell type, group type, and
community specificity of shortest paths.

Collectively, our findings suggest the u-shaped trajectories and
their specificity are directly related to the nested community
structure. That is, our null models preserve topological features
of the network-community labels exactly and nodes’ in-/out-
degrees approximately but are otherwise not directly informed by
neurons’ annotations. However, the results of our study suggest
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that many topological features of the larval fly connectome
are also correlated with annotations; communities, rich clubs,
and local connectivity properties (neurons’ degrees) are related
to function/cell type/group type. Accordingly, in preserving
these topological properties, we are likely inadvertently allowing
information about annotations to “leak” into our analysis, further
underscoring the need for the development of novel null models
for disentangling connectivity data from annotations.

These observations, which are directly in line with previous
large-scale connectome studies (53, 57, 61, 62), suggest that the
connectional properties of interneurons relative to other cell types
may endow them with the ability to rapidly transmit signals to
other downstream modules while readily integrating signals from
upstream sensory units.

Discussion

Here, we analyzed the larval Drosophila connectome. Our
focus was on its community structure—i.e. divisions of the
whole network into smaller subnetworks. We presented evidence
that the network exhibited hierarchical and largely assortative
communities. We also showed that the communities, which
were defined based only on connectivity alone, delineated
functional groups, cell types, and macro-cell groupings from
one another. We reported evidence of a rich-club, comprised
largely of high-degree interneurons. Although rich-club members
were distributed across all communities (at a coarse scale), they
tended to concentrate within a small subset of communities.
We showed the community boundaries were related to the ease
of communication between neurons, and that in delivering a
signal from one neuron to another, shortest paths traversed the
hierarchy of communities in a specific way, but deviated when the
source/target groups contained high percentages of high-degree
interneurons.

Communities Reflect Cell Types and Function. Community
structure is one of the most studied properties of networks.
It has been given proper mathematical treatment for at least
half of a century, with early studies in sociology focusing on
detecting communities using blockmodels fit to social network
data (63–67). The interest in finding latent cluster structure in
network data has continued to the present day (31, 32, 68), ex-
tending far beyond the social sciences, and, with new approaches
and insights, community detection and analysis continues to be
a quickly evolving subdiscipline within network science (69, 70).

In network neuroscience, especially, community structure has
played a central role in shaping our understanding of brain
network organization (17, 19, 71–75). At the large scale–
where most network neuroscience applications have occurred–
communities are generally thought to reflect functionally related
groups of neural elements (76–78).

However, establishing direct links between modules and
annotational data—e.g., cytoarchitectonic properties or cell
types—has been less successful at the large scale. Only recently
has a framework for curating, sharing, and comparing brainmaps
become available (42). Even in network science proper, there has
been skepticism as to whether detected communities have any
basis in “ground truth” community annotations, with studies
reporting only modest alignment (70, 79).

Here, and in line with (21), we show that communities
estimated based only on connectivity nonetheless are “enriched”
for distinct modes of function, cell types, and cell groups. This
means that cells carrying these annotations are concentrated
within particular communities at a level unexpected by chance.

Critically, we show that at coarse scales the enrichment patterns
are nearly one-to-one, so that if a particular functional or
cellular annotation is enriched in community “X ,” it tends
to not be enriched in other communities. These findings
establish a correspondence between community structure and
neurobiological annotation data, reifying the intuition and hy-
pothesis that connectivity-defined communities reflect function
and cytoarchitectural properties at the microscale.

One interesting extension would be to incorporate annotation
data directly into the generative model as covariates, thereby
impacting connection probabilities (80, 81). Indeed, recent
extensions of the SBM have made this possible by including
annotations as a fixed set of parameters (82, 83). To tease apart
which annotations “drive” the formation of communities, one
could systematically “lesion” different annotations from the set of
parameters used to fit the blockmodel, assessing how the exclusion
of different annotation types hinders goodness of fit measures.

Communities Are Mostly Assortative. Typically, when the term
“modularity” is invoked it is often used to refer to “assortative”
community structure—i.e. divisions of a network into segregated
subnetworks. This type of structure is thought to support
specialized function (84), promote evolvability (85), adaptability
(86), robustness to perturbations (87), separation of dynamical
timescales (88), and allow for efficient embedding of the
network’s elements and wiring in three-dimensional space (14).

Indeed, empirical studies of brain networks have consis-
tently revealed precisely this type of organization. On the one
hand, these observations could be viewed as evidence that,
from the perspective of embodied nervous systems, assortative
communities are functionally adaptive features for all (or just
some) of the reasons mentioned earlier. On the other hand,
the preponderance of assortative modules could also reflect
biases in network construction—e.g., correlation-based metrics
of functional coupling that might artificially reinforce assortative
groupings (89)—or biases in community detection. The de facto
methods in network neuroscience—modularity maximization
and Infomap—explicitly seek assortative communities. That is,
even if other types of community structure were present in a
network, these methods are incapable of detecting it.

SBMs, though not without limitations (90), are capable
of detecting generic community types, including assortative
structure (29), and therefore offer a useful framework for
assessing evidence of assortativity in brain networks. If there is a
preponderance of statistical evidence supporting core-periphery
of disassortative communities, then the SBM will recover said
communities.

Here, we use a hierarchical variant of the SBM to detect
communities. We find that, overwhelmingly, communities in-
teract assortatively. This observation is in line with other studies
that have applied SBMs to connectome data (34, 35, 49).
Here, also in line with large-scale imaging studies (33), we
find that the most assortative communities are associated with
(pre)descending neurons involved in proprioceptive, nociceptive,
and mechanosensory function—i.e. sensation and perception.

Although most community interactions are assortative, a small
fraction (about 4%) are nonassortative. These motifs represent
deviations from the near-uniform assortative interactions ob-
served across the larval Drosophila nervous system and cross-link
communities to one another. These deviations also demand func-
tional explanations; while assortative communities are thought to
support specialized sensory processing, what are the functional
roles of disassortativity and core-periphery structures? Future
modeling studies should investigate these and related questions in
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greater detail. An interesting possibility not explored here is that
core-periphery structure emerges from overlapping assortative
communities—i.e. if nodes are allowed to participate in multiple
assortative communities, a group of nodes with comembership
to many of said communities can appear “core-like” (91). In this
case, the core-periphery structure observed here may be consistent
with the hypothesis that neurons are organized into functionally
specialized assortative communities, with the caveat that neurons
exhibit mixed memberships. Future studies should investigate
this alternative explanation.

Hubness of Interneurons Gives Them Unique Network Prop-
erties. Heterogeneous and heavy-tailed degree distributions are
hallmarks of real-world networks (92). These distributions imply
that a small and exclusive subset of nodes make disproportionately
many connections, embedding them in influential positions
within the network.

Indeed, early network analyses of biological neural networks
revealed the presence of putative “hub” nodes (4), an observation
that was further refined when it was discovered that hubs link
together, forming “rich-club” structures (12). These phenomena
are hardly a product of networks reconstructed from magnetic
resonance images, and have been observed across spatial scales
and phylogeny (47, 93–96).

Here, we find that the neuronal connectome of the larval
Drosophila exhibits a heavy-tailed degree distribution and that
high-degree neurons are comprised largely of interneurons
situated in the mid-/central-brain. By virtue of making many
connections, these neurons are conferred a number of unique
structural (and possibly functional) properties. For instance,
high-degree interneurons are the most likely to participate in
nonassortative community motifs and rich-clubs. Their status as
highly connected units also positions them as key nodes along
putative communication pathways (shortest paths), facilitating
efficient and increasingly direct routes to downstream target
neurons, while also making themselves easily accessible targets
for pathways originating in other communities (61).

Intracommunity Communication Is More Efficient than Inter-
community Communication. Understanding how the configu-
ration of a connectome’s edges shapes the flow of signaling has
been a central aim of network neuroscience (97, 98). Recent work
has begun to address this question using network-based models
of communication (57, 58)—stylized processes for delivering a
“signal” from a source node to prespecified target.

Here, we show that the effect of community structure is
imprinted on the efficacy of communication processes—both
centralized and decentralized. Specifically, we find that nodes
consistently assigned to the same module across hierarchical layers
are likely to be connected via shorter paths and exhibit greater
“communicability” compared to nodes that are infrequently or
never assigned.

Combined with the observation that communities are well
aligned with functional annotations and the observations made
elsewhere that communication measures are strongly correlated
with the magnitude of functional coupling between neural
elements (55, 56), our findings position constraints imposed on
communication by community structure as a key determinant of
a neuron’s functional repertoire.

Multiscale Network Neuroscience. For the past two decades,
network science has permeated virtually every scientific discipline
(99). Part of its success is owed to the generality of network

models; a system’s details are abstracted away, leaving behind a
set of circles and lines to represent the system’s elements and their
interactions.

This model has proven profoundly useful in neuroscience in
applications to interareal connectome data (4–6, 100). These
analyses have identified core sets of phylogenetically conserved
architectural features, including small-worldness (10), hubs and
rich clubs (4, 12), modular structure (101), and wiring cost
reduction (39, 102, 103). Though referring to static architectural
properties, these features are often interpreted in terms of brain
function; modules for specialized and segregated information
processing, hubs and small-worlds for integration, and wiring
cost as a constraint that limits the total material and metabolic
expenses of the brain.

However, due in large part to the paucity of whole-brain,
neuron-level connectome data, whether similar organizational
principles are evident at the microscale remains unclear (104,
105). As we enter the era of nano-connectomics, it is possible
to not only assess whether features described in other scales
are evident (106), but to understand altogether new network
phenomena (107). Ultimately, this approach holds promise for
effectively bridging scales. Starting from MRI data, the smallest
characterizable unit is the voxel or surface vertex; probing features
at finer spatial scales is impossible. On the other hand, nanoscale
data can be coarse-grain to the scale of voxels (≈1 mm), present-
ing an opportunity for truly multiscale network models (108).

Future Directions. The focus of this paper was to link network
communities derived from synaptic connectivity with neuronal
annotations. One of the challenges associated with this type of
analysis is adequately addressing, from a statistical perspective, the
nested nature of the detected communities as well as the annota-
tions. For instance, we found that community 5 was significantly
“enriched” for sensory neurons. That is, the community was
composed of more neurons with the “sensory” label than expected
under the null model. However, we also found that community
5 was enriched for the labels “gustation” and “vision,” which
are nested within the broader “sensory” label. To what extent
should we anticipate this second result—enrichment for specific
functional annotations—given that the same community was
enriched for the “sensory” label? It is straightforward to construct
counterexamples where the second outcome does not necessarily
follow the first. For instance, a community could be enriched for
“sensory” neurons but with each subcategory represented exactly
proportional to its baseline rate. While there exist frameworks
for dealing with nested hypotheses (109, 110), their application
to large datasets with multiple levels of nestedness is not
straightforward. With the proliferation of nano-scale connectome
data (111) and increasingly rich and nested annotations of both
neurons and their connections (112), this statistical issue presents
a serious barrier. Future studies should focus on the exploration
of frameworks for addressing this challenge.

A second important consideration for future studies con-
cerns the enterprise of community detection and its role in
network neuroscience. Community detection algorithms vary
across multiple dimensions and, in general, will yield dissimilar
estimates of community structure. We highlight an example of
this here when we compare SBMs and modularity maximization;
the SBM partitions suggest that communities are not strictly
assortative, while modularity maximization is restricted to detect-
ing assortative structure. We also compare our SBM partitions,
which were derived using connectivity information alone, with
partitions from ref. 21, who used spatial information (hemisphere
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labels) in their clustering algorithm. In all cases, we found
evidence for convergence across algorithms; communities were
not identical, but had considerable overlap. Nonetheless, carrying
out detailed comparisons of community detection algorithms
may not be straightforward in future studies; the increased
dimensionality of nano-scale connectomes limits the application
of computationally complex community detection algorithms.
Relatedly, algorithms that incorporate meta-data and annotations
run the risk of limited generalizability, i.e. they can only be
applied to connectomes that have the same/similar meta-data.
In general, these differences and considerations encourage the
exploration and reanalysis of the same dataset using multiple
approaches. Indeed, when viewed through the lens of statistical
inference, there exists a many-to-one mapping of communities
to connectomes (113), such that very different community
structure can offer equally good/bad descriptions of a network
depending upon the exact function that maps community labels
to connectivity.

Materials and Methods
Dataset. We analyzed the larvalDrosophila connectome as published in ref. 21.
The complete connectome included a giant strongly connected component of

N = 2,952 neurons and M = 110,677 edges. See SI Appendix for details
related to this dataset.

Community Detection. Here, we fit a hierarchical SBM to the larvalDrosophila
connectome following ref. 30 (https://graph-tool.skewed.de/). SBMs are gen-
erative models of a network in that, given the community assignments of all
nodes, � = {�i}, the model generates the observed network with probability:
P(W|�, �), where � refers to any additional model parameters that specify
the link between community labels and the network. The hierarchical variant
recursively fits the SBM to network data using an efficient agglomerative
algorithm to minimize the posterior probability that the model generated the
observed network (114). See SI Appendix for details related to community
detection and subsequent analyses.

Data, Materials, and Software Availability. Drosophila connectome data
used in the present study is available here: https://github.com/brain-networks/
larval-drosophila-connectome (115). Code for estimating the hierarchical
stochastic blockmodels is available here: https://figshare.com/articles/dataset/
graph_tool/1164194 (116). Code for estimating community motifs is avail-
able here: https://github.com/brain-networks/wsbm_sampler (117). Code for
performing spatially constrained permutations of brain maps: https://github.
com/murraylab/brainsmash (118). All other data are included in the manuscript
and/or SI Appendix.
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