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a b s t r a c t 

The modular structure of brain networks supports specialized information processing, complex dynamics, and cost-efficient spatial embedding. Inter-individual 

variation in modular structure has been linked to differences in performance, disease, and development. There exist many data-driven methods for detecting and 

comparing modular structure, the most popular of which is modularity maximization. Although modularity maximization is a general framework that can be modified 

and reparamaterized to address domain-specific research questions, its application to neuroscientific datasets has, thus far, been narrow. Here, we highlight several 

strategies in which the “out-of-the-box ” version of modularity maximization can be extended to address questions specific to neuroscience. First, we present approaches 

for detecting “space-independent ” modules and for applying modularity maximization to signed matrices. Next, we show that the modularity maximization frame 

is well-suited for detecting task- and condition-specific modules. Finally, we highlight the role of multi-layer models in detecting and tracking modules across time, 

tasks, subjects, and modalities. In summary, modularity maximization is a flexible and general framework that can be adapted to detect modular structure resulting 

from a wide range of hypotheses. This article highlights multiple frontiers for future research and applications. 
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. Introduction 

The human brain is fundamentally a network and can be described at

ultiple spatiotemporal scales in terms of nodes – neural elements, e.g.

ells, populations, areas – and edges, e.g. synapses, projections, fiber

racts, and correlated activity ( Park and Friston, 2013; Sporns et al.,

005 ). Over the past two decades, network analyses have uncovered key

ttributes of brain networks that are believed to support distinct modes

f brain function. These include small-world architecture to support seg-

egated and specialized information processing and efficient integration

f information over long distances ( Bassett and Bullmore, 2006; Sporns

nd Zwi, 2004 ), influential and central hubs that form integrative rich

lubs ( Hagmann et al., 2008; Van Den Heuvel and Sporns, 2011 ), and

ost-efficient spatial embeddings ( Bassett et al., 2010 ). 

Additionally, brain networks can be decomposed into subgraphs – re-

erred to as modules or communities in the language of network science

 Meunier et al., 2009; Sporns and Betzel, 2016 ). Modules are typically

efined as cohesive subgraphs, where neural elements within the same

odules tend to form strong connections to one another while those in

ifferent modules are weakly connected or not connected at all. This
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ype of network organization helps support specialized processing, has

een used to delineate the brain’s functional systems ( Gordon et al.,

016; Power et al., 2011 ), and is thought to support human cognition

 Medaglia et al., 2015 ). Studying the brain’s modular structure confers

bvious advantages. It helps with dimension reduction ( Betzel et al.,

017 ), facilitates discovery of underlying structure, and allows for clas-

ification of nodes’ roles ( Guimera and Amaral, 2005 ). 

How does one actually go about studying a network’s community

tructure? On the one hand, network neuroscientists can borrow from

ne of any number of previously discovered community partitions to as-

ign nodes (parcels) to communities or cognitive systems. For instance,

ower et al., 2011 describes a division of the brain into thirteen systems

ased on their network analysis. Other studies have reported similar di-

isions ( Gordon et al., 2016; Schaefer et al., 2018 ), allowing users to

btain a validated set of assignments for brains in their study. 

However, there are many cases where we might expect previously

efined communities to be unsuitable, for instance, in case-control stud-

es, where we anticipate ahead of time that a clinical population might

xhibit communities dissimilar from those of a neurotypical individual

 Alexander-Bloch et al., 2010 ). More generally, if we want to capture
ember 2021 
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ndividual differences in community structure, then imposing a shared

artition onto a cohort may not be especially useful. 

In these cases, we can use data-driven methods to algorithmically

iscover a network’s community structure ( Fortunato, 2010; Fortunato

nd Hric, 2016; Newman, 2012 ). In most cases, these algorithms aim

o partition a network’s nodes into clusters that maximize some objec-

ive function. For instance, Infomap seeks a maximally compressible de-

cription of a random walker moving over a network’s edges ( Rosvall

nd Bergstrom, 2008; Sanchez-Rodriguez et al., 2021 ). Stochastic block-

odels maximize the likelihood that a probabilistic model generated the

bserved network ( Peixoto, 2014 ). Among this class of data-driven al-

orithms, however, modularity maximization is among the best known

nd most widely applied within network neuroscience ( Newman and

irvan, 2004 ). The aim of modularity maximization, in general, is to

artition nodes into communities so that the observed density of con-

ections within communities is maximally greater than what we would

xpect had the network been generated under some null connectivity

odel. This intuition is captured by the modularity objective function,

 . 

Although this definition of communities is general and can accom-

odate many distinct definitions of the “null connectivity model ”, its

pplication in the context of network neuroscience has been narrow.

n most applied studies, the null connectivity model generates random

etworks with a fixed degree and strength distribution. This “enshrined ”

odel, which was promoted in the original studies of modularity, helps

orrect for communities that are driven by a network’s degree distri-

ution, i.e. groups of nodes that due to the fact that they make many

onnections are therefore more likely to be connected to one another.

his model, however, has a number of issues – e.g. it allows for self-

onnections, which are generally disallowed in the construction of em-

irical brain networks, and corresponds to a network with prohibitively

xpensive wiring cost. 

The aim of this prospective article is not to provide a definitive

oadmap for performing community detection or even how to use modu-

arity maximization in practical contexts. For this, there are many useful

eviews ( Fortunato and Hric, 2016; Betzel ). Rather, the aim of this ar-

icle is to highlight modifications to a standard community detection

lgorithm that open up opportunities to address research questions that

re central to network neuroscience and would be difficult to address

therwise. 

In this study, we will examine several ways in which the modular-

ty function could be extended to be more biologically plausible and to

ccommodate specific research questions and hypotheses. This work is

ivided into three sections. In the first section, we cover alternative null

onnectivity models and discuss their relative strengths and weaknesses,

ommenting on their suitability for network neuroscience research. In

he second section, we show how modularity maximization can be used

o discover clusters of brain regions that are dissimilar between condi-

ions or correlated with a continuous variable. In the final section, we

ill introduce the multi-layer formulation for modularity maximization

nd highlight strategies for extending this framework to study multi-

ubject, multi-modal, and time-varying network datasets. Alongside this

aper, we provide documented example scripts so that researchers can

pply these techniques to their own data. 

. Modularity maximization 

.1. Network construction 

The human brain can be divided into functionally, cytoarchitecton-

cally, and connectionally distinct regions or areas ( Brodmann, 1909;

esikan et al., 2006; Schaefer et al., 2018 ). These regions and their pair-

ise connections can be modeled as the nodes and edges of a graph or

etwork and represented as its connectivity matrix, 𝐴 ∈ ℝ 

𝑁×𝑁 whose el-

ment 𝐴 𝑖𝑗 encodes the existence and weight of the connection between

odes 𝑖 and 𝑗 ( Bullmore and Sporns, 2009; Rubinov and Sporns, 2010 ).
2 
his representational framework can be used to model the network ar-

hitecture of both functional and structural brain networks, although

etwork inference and interpretation differs between modalities. 

.1.1. Structural connectivity 

Anatomical or structural connectivity (SC) refers to physical path-

ays that link neural elements to one another, including synaptic con-

acts ( White et al., 1986 ) and axonal projections ( Markov et al., 2014;

h et al., 2014 ). In the case of large-scale brain networks, these path-

ays represent white-matter fiber tracts which can be inferred non-

nvasively from diffusion-weighted MRI data using tractography algo-

ithms ( Hagmann et al., 2008; Sporns et al., 2005 ). SC changes over

ong timescales, e.g. with development Baum et al., 2017, 2020 and ag-

ng Betzel et al., 2014 , and is relatively invariant over shorter scales

the duration of a typical MRI scan). Although its precise density of

onnections varies across spatial scales and reconstruction procedure

 Ercsey-Ravasz et al., 2013; Horvát et al., 2016; Sarwar et al., 2019 ),

C is generally sparse, meaning that many pairs of regions are not di-

ectly connected. This sparsity, along with the overall configuration of

onnections, imposes constraints on interregional communication pat-

erns, effectively shaping the spatiotemporal evolution of brain activity

 Adachi et al., 2012; Avena-Koenigsberger et al., 2018; Honey et al.,

007 ). 

.1.2. Functional connectivity 

Functional connectivity (FC), on the other hand, is a mathemati-

al construct that measures the statistical relationship between activ-

ty recorded at two different points in the brain ( Friston, 1994; Horwitz,

003 ). Although this definition includes virtually any bivariate (and pos-

ibly multivariate) statistical measure, FC is most commonly measured

s the zero-lag correlation of fMRI BOLD activity between two regions

and usually extended to all pairs of regions). Whereas SC constrains in-

erregional communication, FC reflects the patterns of correlated activ-

ty that emerge as a consequence of those constraints. Unlike SC, which

hanges across long timescales, FC evolves rapidly and fluctuates over

hort periods of time ( Hutchison et al., 2013; Lurie et al., 2020 ). 

.2. Community structure of human brain networks 

Although SC and FC reflect distinct modes of interregional coupling,

hey both exhibit modular structure ( Sporns and Betzel, 2016 ). Reported

tructural modules tend to be compact and contain spatially contiguous

egions ( Hagmann et al., 2008 ). The spatial contiguity of structural mod-

les likely reflects evolutionary pressure to reduce the cost of wiring by

orming short-range and hence less-costly connections ( Stiso and Bas-

ett, 2018 ). Functional modules, because there is no explicit cost asso-

iated with the formation of long-distance correlations, are organized

nto brain-wide and spatially-distributed clusters ( Power et al., 2011;

eo et al., 2011 ). Even in the absence of explicit task instructions, func-

ional modules recapitulate well-known patterns of task-evoked activity

nd previously-delineated functional systems ( Smith et al., 2009 ). These

bservations give rise to the hypothesis that modularity is a key compo-

ent of functional specialization ( Crossley et al., 2013 ). 

.3. The modularity or “Q ” heuristic 

In general, a network’s modular structure is unknown ahead of time.

ven in the case of SC and FC, whose modular structure has been char-

cterized many times over, we may be interested in how the modular

tructure of individuals or groups of individuals deviates from compos-

te, population-averaged modules. Assigning a network’s nodes or edges

o modules by hand or based on visual inspection would be tedious and

nfeasible for large networks or even for small networks in large, multi-

ubject cohorts. Accordingly, the network elements are usually assigned

o modules algorithmically through a process known as community de-

ection ( Fortunato, 2010 ). 
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Fig. 1. Modularity maximization. Modularity maximization works by comparing an observed network ( a ) with what would be expected were one to simulate a 

null connectivity model an infinite number of times ( b ). Specifically, the observed ( 𝐴 ) and expected ( 𝑃 ) weights of connections are compared to one another via an 

element-wise subtraction, yielding a modularity matrix 𝐵 ( c ). Modularity maximization aims to assign network nodes to communities so that the internal density 

of connections is maximally greater than chance. The modularity function, 𝑄 , is used to assess the quality of modular partitions. In panel d we show examples of a 

high-quality partition ( top ; within-community connections tend to be stronger than expected) and a low-quality partition ( bottom ). 
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There exists a multitude of algorithms and heuristics for detecting

 network’s modules ( Lancichinetti and Fortunato, 2009 ). Some, like

tochastic blockmodels, use statistical inference to group nodes into

lusters with similar connectivity profiles. Most methods force nodes

o belong to only one module (although others allow for overlap ( Ahn

t al., 2010; Evans and Lambiotte, 2009; Faskowitz et al., 2020; Palla

t al., 2005 )). Some methods detect modules based on how network

roperties shape the evolution of dynamical processes on the network

 Pons and Latapy, 2006; Rosvall and Bergstrom, 2008 ). Others focus on

he network’s static topology alone. 

In this last category is modularity maximization ( Newman and Gir-

an, 2004 ). As noted in the introduction, modularity maximization op-

rates on an eminently simple principle: compare what we actually see

ith what we might expect. In the context of networks, this means com-

aring an observed connectivity matrix, 𝐴 ( Fig. 1 a), with another ma-

rix of identical dimensions, 𝑃 ∈ ℝ 

𝑁×𝑁 , whose element 𝑃 𝑖𝑗 encodes the

eight of the connection between nodes 𝑖 and 𝑗 that we would expect

nder some null connectivity model ( Fig. 1 b). The simplest comparison

f these matrices is an element-wise subtraction: 

 = 𝐴 − 𝑃 . (1)

The resulting matrix, 𝐵, has a special name – the modularity matrix

 Fig. 1 c). The element 𝐵 𝑖𝑗 encodes whether the actual connection be-

ween 𝑖 and 𝑗 is stronger ( 𝐵 𝑖𝑗 > 0 ) or weaker ( 𝐵 𝑖𝑗 < 0 ) than we would

xpect. Modularity maximization uses the modularity matrix to evalu-

te the goodness or quality of a modular partition, i.e. a division of a

etwork’s nodes into non-overlapping modules. A partition’s quality is

ated by the modularity function, 𝑄 , which is calculated as: 

 = 

∑
𝑖𝑗 

𝐵 𝑖𝑗 𝛿( 𝜎𝑖 , 𝜎𝑗 ) . (2)

ere, 𝜎𝑖 ∈ {1 , … , 𝐾} indicates to which of the 𝐾 modules that node 𝑖 is

ssigned and 𝛿( 𝜎𝑖 , 𝜎𝑗 ) is the Kronecker delta function, whose output is 1
3 
hen 𝜎𝑖 = 𝜎𝑗 and 0 otherwise. Effectively, then, this double summation

s over edges (node pairs) that fall within modules. The larger the value

f 𝑄 , the higher quality the partition ( Fig. 1 d). That is, 𝑄 tends to be

arge when communities are more internally dense than expected. 

Rather than using 𝑄 to simply evaluate the quality of a partition, 𝑄

an be optimized outright, using a procedure known as modularity maxi-

ization. Like many clustering problems, discovering the partition that

orresponds to the global maximum 𝑄 is computationally intractable,

nd so many algorithms have been proposed to approximate its value.

mong the most popular is the so-called “Louvain algorithm ” – a multi-

tage, greedy algorithm that, in benchmark testing, is one of the fastest

nd most accurate ( Blondel et al., 2008; Jutla, Jeub, Mucha ) (although

ew versions challenge this ( Traag et al., 2019 )). The Louvain algorithm

s initialized with every node assigned to its own community. In random

rder, nodes are merged into larger communities if the merger yields

n increase in 𝑄 . When no single-node moves can increase 𝑄 , nodes

re aggregated into “meta-nodes ” composed of all nodes with the same

ommunity label. The previous steps are then repeated until a complete

ycle of single-node moves and aggregation yields no improvement. 

.4. Best practices 

Modularity maximization is a useful framework for discovering com-

unities in a network. Using it effectively, however, requires that a user

avigate several issues including the near-degeneracy of solutions as

ell as a potential resolution limit. Here, we offer some practical guid-

nce for addressing these issues. 

.4.1. Near-degeneracy of the modularity landscape 

Obtaining the optimal partition of a network into communities is

mpossible in all but the most trivial instances. Stochastic methods like

he Louvain algorithm generate estimates of this optimal partition, but
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t is understood that no single estimate should be treated as privileged.

ore generally, and this is especially true as the size of a network grows

 Good et al., 2010 ), there will be many dissimilar partitions of roughly

he same quality. The reason for this is simple. Imagine we could obtain

he globally optimal partition, i.e. the one corresponding to the largest

ossible 𝑄 . If we were to randomly select a node and move it to a new

ommunity, the partition would no longer be optimal, but it would likely

till be of high quality. If we did this for every node, for every possible

ove, and then every pair of nodes, and every triplet, etc., we would ob-

ain an ensemble of near-optimal solutions. In practice, methods like the

ouvain algorithm sample from these types of partitions – high quality,

ut likely sub-optimal. Importantly, there is heterogeneity among these

olutions. So how do we solve this? 

One possibility is to embrace this heterogeneity and focus on

roperties of this ensemble rather than those of any single partition

 Peixoto, 2012 ). Another possibility is to condense information from

he ensemble of partitions into a co-assignment matrix, whose elements

ndicate the fraction of partitions in which pairs of nodes were assigned

o the same community ( Kenett et al., 2020 ). This results in graded and

uzzy community assignments. 

Oftentimes, however, it is useful to obtain a single representative

artition to summarize the ensemble of near-optimal solutions. Again,

here are multiple strategies for doing so. One possibility is to calculate

he pairwise similarity of partitions to one another and select the one

hat is most similar, on average, to the others ( Doron et al., 2012 ). The

ost common strategy, however, is to estimate a consensus partition. In

eneral, this involves iteratively reclustering the coassignment matrix

 Lancichinetti and Fortunato, 2012 ), sometimes after applying a thresh-

ld to remove elements from node pairs that are infrequently coassigned

o the same community. A potentially more useful and parameter-free

ethod is to estimate, along with the empirical coassignment matrix,

he expected coassignment matrix, whose elements denote the likeli-

ood that two nodes would be assigned to the same community given a

andom set of partitions where the number and size of communities is

qual to that of the estimated partitions. Note that the elements of the

xpected co-assignment matrix can be estimated using a permutation

odel ( Betzel, 2020 ). With the empirical and expected coassignment

atrices, we can set up a modularity problem and use the modularity

aximization heuristic to discover the consensus clusters. 

.4.2. Resolution limits and multi-scale extensions 

If we constructed a network of maximally connected cliques and

inked cliques to one another by single edges, we would expect modu-

arity maximization to discover the cliques as communities. In practice,

owever, for certain sized networks and null connectivity models, the

resence of even a single link between communities may appear so “un-

xpected ” that it is advantageous from the perspective of modularity

aximization to group cliques together, defying the expectation that

ach clique correspond to a distinct module. This tendency to merge

mall, well-defined communities into larger clusters is known as the

esolution limit ( Fortunato and Barthelemy, 2007 ). The implication is

hat, under certain conditions, modularity maximization may be blind

o small communities. 

To resolve this issue, many authors have incorporated a structural

esolution parameter into the modularity equation. In its standard im-

lementation, this parameter scales the relative contribution of the

ull connectivity model ( Arenas et al., 2008; Reichardt and Bornholdt,

006 ). That is, 𝐵 = 𝐴 − 𝛾𝑃 , where 𝛾 is the resolution parameter. In ef-

ect, varying the value of 𝛾 changes the scale (roughly, the size of com-

unities) that modularity detects. When 𝛾 is small, many elements of

 are greater than 𝛾𝑃 and, when grouped into large communities, have

he net effect of increasing 𝑄 . On the other hand, when 𝛾 is larger, a

uch smaller and exclusive set of connections in 𝐴 exceed 𝛾𝑃 , yields

uch smaller communities. Thus, 𝛾 acts as a way to zoom in and out,

etecting finer and coarser structure, and helping to circumvent the res-

lution limit. In some instances, a “sweep ” across 𝛾 values, in which
4 
odular maximization is performed many times while systematically

arying the resolution parameter, can be used to tune the results of mod-

larity maximization to a specific number of communities or to obtain a

ultiresolution (or hierarchical) organization of the modular structure

 Akiki and Abdallah, 2019; Harris et al., 2019; Jeub et al., 2018 ). 

.5. Modifying modularity 

In practice, modularity maximization is used to address the question:

here is a network, what are its modules? ” However, even this seemingly

traightforward question requires that the user make a series of decisions

 Betzel, 2020 ). Many of these decisions are fundamental and cannot be

voided even if modularity maximization were being used to address a

ifferent set of questions. These include how to deal with the degeneracy

f the modularity landscape (the number of nearly-optimal partitions

rows exponentially with the size of the network) ( Good et al., 2010 )

nd how to address issues of scale and the so-called resolution limit (un-

er some conditions, modularity maximization can fail to detect small

ommunities, even if they are unambiguously defined) ( Fortunato and

arthelemy, 2007 ). Other decisions are structural and concern how the

odularity maximization problem is formulated. For instance, the user

eeds to define the expected weights of connections – the variable 𝑃 .

his decision is non-trivial and will impact the character of the detected

ommunities ( Expert et al., 2011 ). 

The choice of null model is one decision that a user needs to make

nd is an example of how the modularity maximization problem can be

odified. There are, of course, other ways to alter the way the problem

s set up (e.g. by including a resolution parameter that scales the relative

ontribution of 𝑃 ( Reichardt and Bornholdt, 2006; Schaub et al., 2012;

ambiotte, Delvenne, Barahona )). In fact, any decision that changes

he elements of the modularity matrix, 𝐵, has the capacity to impact

he detected communities. In the following sections, we explore three

trategies for modifying the modularity matrix and thereby changing

he modularity maximization problem. We show that the modifications

elp address questions that are at the core of network neuroscience. 

. Single-layer modularity maximization 

Most commonly, modularity maximization is used to discover the

odular structure of a single network. In neuroscience, this network

ight represent the structural or functional connectivity from a single

ubject or it may be a composite (average) of connectivity data from

any individuals ( Betzel et al., 2019 ). This is arguably the simplest

odularity maximization problem. The aim is to discover modules by

aximizing 𝑄 , which is a function of two variables: 𝐴 , the connectivity

atrix from the network of interest, and 𝑃 , the expected weight of con-

ections. All the user needs to do is define 𝑃 and run the optimization

euristic. 

.1. Null models for brain networks 

What is the appropriate choice for 𝑃 ? Consider, for a moment, two

rain regions labeled 𝑖 and 𝑗. Maybe your network of interest is struc-

ural, and the voxels along the white-matter tract between 𝑖 and 𝑗

ave some average fractional anisotropy, which represents the observed

eight of the connection. What is the expected FA of that connection?

hat is the null (connectivity-based) model that gave rise to that ex-

ected weight? And further, what network characteristics does the null

odel consider? Does it take into account the spatial embedding of the

onnection, and does it avoid rendering self-loops? Perhaps the network

f interest is derived from functional imaging data, and the edges rep-

esent co-activity patterns between regions. What null model would ac-

ount for the statistical relationships of this network? 

.1.1. Configuration models 

These are questions that the user must confront when performing

odularity maximization. However, in most applications the entire en-
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Fig. 2. Alternative null models for modularity maximization. Modularity maximization requires that a user specify both the observed and expected weights 

of connections. ( a ) An example observed network (in this case an empirical, group-averaged structural connectivity network). ( b ) Common null models do not 

preserve spatial information. ( c ) There exist many null models that preserve spatial information (and in some cases other information about the network, e.g. nodes’ 

degrees). Note that, in general, models in which spatial information is preserved tend to be more similar to the observed network. This is evident even upon visual 

inspection. ( d ) Consensus community labels obtained using a null model in which spatial information is absent. ( e ) Consensus community labels obtained using a null 

model that preserves spatial information along with nodes’ degrees. Panels f and g show module co-assignment matrices for both, revealing that they both generate 

“internally dense and externally sparse ” assortative communities. ( h ) The element-wise difference between co-assignment probability matrices, however, reveals that 

the strength-preserving model tends to group nodes in the same hemisphere into the same community, while the spatial model allows nodes in different hemispheres 

to belong to the same community. 
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erprise of selecting a null model and defining 𝑃 is sidestepped. Rather

han thinking about what might be the appropriate model, the user lets

he software implementation decide for them (if the software even gives

he user the option of deciding), usually defining 𝑃 based on a “config-

ration model ”. The most common model of this class is one that gen-

rates null networks whose nodes have the same degree and strength as

n the original network, but where connections are otherwise formed at

andom ( Fig. 2 b). Under this model, the expected weight of a connection

s given by: 

 𝑖𝑗 = 

∑
𝑖𝑗 

𝑘 𝑖 𝑘 𝑗 

2 𝑚 

(3)

here 𝑘 𝑖 = 

∑
𝑗 𝐴 𝑖𝑗 is the degree of node 𝑖 and 2 𝑚 = 

∑
𝑗 𝑘 𝑗 is the total

umber of edges in the network (or node strength and total weight if

he network’s edges are weighted). 

Intuitively, by selecting this model the user is comparing their ob-

erved network against the set of all possible networks with precisely
5 
he same degree/strength sequence. This is an important point; the con-

guration model preserves a set of features of the observed network

same number/weight of edges, same degree sequence), while random-

zing others. By preserving these features, specifically nodes’ degrees,

he configuration model also guards against the possibility of two nodes

eing connected to one another and assigned to the same module simply

ecause they form more connections. 

While the configuration model is a good general null, is it an appro-

riate null generator for brain networks? If not, what network features

hould be preserved in neuroscience-specific null model? How do we

fficiently generate randomized networks with those features? 

.1.2. Incorporating spatial relationships 

One of the key organizational features of brain networks is the depen-

ence of connections and their weights on nodes’ spatial embeddings.

n general, the further apart two brain regions are from one another,

he less likely they are to be connected and the weaker the weight of
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he connection. This is especially true in the case of SC. In other words,

onnections are not formed independently, but according to the geom-

try in which the brain is embedded. These dependencies are critical

or viability; longer and thicker connections are more costly, requiring

ore material to form and more energy to maintain and use for sig-

aling. Moreover, they must be compact enough to fit within the skull.

herefore, over time, brains have come to adopt wiring diagrams that

avor the formation of short (and less costly) connections. A brain that

iolates this soft constraint and forms many long connections quickly be-

omes too materially and metabolically expensive, exceeding the limits

f viability. 

This is the chief problem with configuration models. In practice,

hese models assume that connections are formed randomly and inde-

endently; the only constraint is that the random networks’ nodes have

he same degree/strength as the original network. This process, how-

ver, incorporates no information about spatial dependencies; networks

enerated using the configuration model contain many times more long

istance connections and their total cost (measured as the summed

ength of their connections) far exceeds what is observed in any empiri-

al brain network ( Gollo et al., 2018 ). The configuration model, because

t fails to preserve this essential feature of brain networks, can be viewed

s far too liberal and almost a straw man when it comes to comparisons

ith empirical data. Note that a second, but possibly less flagrant issue

ith the configuration model is that it allows for self-connections, i.e.

 𝑖𝑖 = 

𝑘 𝑖 𝑘 𝑖 

2 𝑚 ≠ 0 . These connections are usually zeroed out in empirical SC

nd FC data, which means that the null model allows for connections

hat are explicitly forbidden in the observed data. 

Fortunately, generating randomized networks that preserve a net-

ork’s wiring cost is a simple process. In fact some of these algorithms

an simultaneously preserve cost and node degree (although it is much

ore difficult to preserve node strength as well ( Fig. 2 c). 

One strategy for preserving spatial relationships is to preserve the

inary structure of the observed network but to randomly assign weights

o the edges ( Roberts et al., 2016 ). This model naturally preserves each

ode’s degree as well as the total cost of wiring. In addition, the model

lso sets each edge’s expected weight to an identical value equal to the

ean weight of all connections in the original matrix. 

A second possibility is to construct a “minimally-wired ” model. In

his model, one calculates the mean interregional distance between ev-

ry pair of nodes and places connections between the 𝐾 shortest dis-

ances, where 𝐾 is the number of edges in the original network. Weights

an then be introduced through rank-preserving procedures. Note that

his model does not preserve nodes’ degrees. 

A third possibility is to parametrically model the effect of distance.

n these models, we define a function that monotonically varies as a

unction of distance (or possibly other variables), e.g. 𝑃 𝑖𝑗 = exp (− 𝛾𝐷 𝑖𝑗 )
r 𝑃 𝑖𝑗 = 𝐷 

− 𝜂
𝑖𝑗 

. Here, 𝑃 𝑖𝑗 is the probability that nodes 𝑖 and 𝑗 are con-

ected and 𝐷 𝑖𝑗 is the distance between those nodes. As long as 𝛾 > 0
nd 𝜂 > 0 , the probability of forming long connections will be smaller

han short connections. Using these models, connections can be popu-

ated using two methods – first, one can calculate the probability for

very pair of nodes and then, for every { 𝑖, 𝑗} , flip a biased coin to de-

ermine whether or not a connection should be added. The variables 𝛾

nd 𝜂 can be selected so that the expected number of connections gen-

rated by the model matches that of the observed network 𝐾 = ⟨𝐾⟩. A
econd possibility is to change the equalities to relative probabilities. i.e.

 𝑖𝑗 = exp (− 𝛾) → 𝑃 𝑖𝑗 ∝ exp (− 𝛾) , and iteratively add edges until 𝐾 edges in

otal have been placed. This procedure ensures that networks generated

y this model have exactly 𝐾 connections. 

So far, each of these models preserve select features of a spatially

onstrained brain network but never more than one. In general, pre-

erving multiple features is a more challenging task and, for certain sets

f features, the space of possible random networks generated by the

ull model may be small or difficult to access. However, there are sev-

ral strategies for doing so. One possibility is to use a “space-aware ”

onfiguration model. The generic configuration model can be approx-
6 
mated using a rewiring or “edge-swapping ” procedure, in which two

dges between four distinct nodes are swapped, so that if the initial set

f edges were formed between nodes { 𝑖, 𝑗} and { 𝑢, 𝑣 } , the new set could

e formed between { 𝑖, 𝑢 } and { 𝑗, 𝑣 } or { 𝑖, 𝑣 } and { 𝑗, 𝑢 } . This procedure

an be made “space-aware ” by forcing the new edges to have similar

engths as the two original. The result is a network whose wiring cost

pproximates that of the original network and whose degree sequence is

dentical. This procedure also approximately preserves the relationship

etween edges’ weights and lengths. 

The incorporation of spatial information into null models helps to

reserve neuroanatomical realism by generating networks whose wiring

ost is approximately equal to that of the observed SC matrix. This is ac-

omplished by approximating the observed distribution of connection

engths. However, these models do not preserve other features of the

bserved network. For instance, a key feature of brain network data is

he propensity for homotopic regions to be connected to one another

 Deco et al., 2014 ). Preserving other features is possible but requires

hat additional constraints be imposed on null models, leaving open op-

ortunities for future work. 

The methods described above work well for sparse networks where

dges are generated independently. However, for networks whose edges

re interrelated to one another, e.g. correlation networks and functional

onnectivity, this method may be inappropriate ( Zalesky et al., 2012 ).

ntroducing spatial relationships into null models of functional connec-

ivity is, therefore, more challenging and, in some ways, not as neces-

ary. While the effect of space on SC is well-documented Honey et al.,

009 , functional connections reflect statistical relationships between

ecorded activity and not physical tracts. Consequently, there is no ex-

licit cost associated with forming a functional connection, whereas

here is a cost associated with a structural connection. Indeed, while

he correlation of functional connectivity weights and distance is strong

or very short connections, beyond ≈ 40 mm, functional connections can

ake on a wide range of values, including some that are exceptionally

trong, e.g. homotopic partners. 

Nonetheless, it may be useful to incorporate spatial information into

he null model for FC. One possibility for doing so is based on quadratic

orms, as in Bellec et al., 2006 . Briefly, this procedure entails fitting a

arametric model of distance-dependence to data. The model, impor-

antly, preserves transitive properties of correlations, as does other sim-

lar models that fit spatial properties of correlation matrices ( Burt et al.,

020 ). 

Another strategy is to incorporating spatial relationships into cor-

elation matrices at the level of time series. For instance, one recent

aper proposed a method for generating a distance-dependent correla-

ion matrices through a reweighting of uncorrelated regional time series

 Esfahlani et al., 2020 ). For every region, its time series was defined as

 weighted sum of all other regions’ time series, where the weights were

nversely proportionally to the Euclidean distance between regional cen-

roids. Accordingly, nearby regions contributed more than distant re-

ions. As a result, the elements of the resulting correlation matrix de-

ayed monotonically as a function of distance and, because the weights

rom the summation were parameterized, the rate of decay could be

odulated to match the sharp decay in FC over the first 40 mm seen in

mpirical FC data. 

Spatially-informed null models incorporate an element of realism

ot observed in the configuration model. At the very least, they show

hat the choice of null model will, in general, impact the character of

he detected communities and their subsequent interpretation. This was

emonstrated in two recent papers ( Betzel et al., 2017; Esfahlani et al.,

020 ) in which configuration models were explicitly compared with

odels that encode spatial information. In Betzel et al., 2017 , the au-

hors fit a spatial generative model to SC data and used the model to

efine the expected weights of connections. The resulting modularity

atrix emphasized connections whose existence would not be antici-

ated had the network been generated according to cost-reduction prin-

iples alone. The communities detected using the model reflected this,
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xhibiting broader spatial extent than those detected with the config-

ration model, including instances of spatially disjoint communities, a

eature that is usually never observed using the standard configuration

odel. 

More recently, Esfahlani et al., 2020 applied a similar model to FC

ata from the Human Connectome Project ( Van Essen et al., 2013 ).

he authors demonstrated that, after correcting for spatial relation-

hips, nodes in sensorimotor systems exhibited increased participation

oefficient, suggesting that spatial relationships may obscure the cen-

rality of some regions. Then, using the spatial model as a null model

or modularity maximization, the authors detect communities and show

hat they, in general, disagree with previously delineated communities

 Schaefer et al., 2018 ). 

.1.3. Null models for signed matrices 

Another way that the modularity equation can be (and often is)

eimagined, is to make it compatible with signed matrices. This is a ne-

essity when dealing with functional connectivity data where weights

re estimated using Pearson correlation. The result is a matrix in which

very node is connected to every node by a connection of some magni-

ude, oftentimes of mixed valence (positive and negative connections). 

Naively, one might ask why the standard configuration model is

nappropriate. Recall that the configuration model calculates expected

onnection weights based on the (weighted) degrees of nodes. In the case

f correlation matrices, every node has identical degree and, because at

east some fraction of connections are negative, a simple summation of

heir weights can return a misleading value for a node’s weighted degree

because positive and negative connections can offset one another). 

Some of the earliest strategies for dealing with signed matrices is to

onstruct a modularity function that deals separately with the positive

nd negative elements. That is, given a connectivity matrix, 𝐴 , to create

wo distinct matrices, 𝐴 

+ and 𝐴 

− , comprised of the positive and nega-

ive connections only. Then, to use the configuration model to estimate

he expected positive and negative weights of connections as 𝑃 ± 
𝑖𝑗 

= 

𝑘 
± 
𝑖 
𝑘 
± 
𝑗 

2 𝑚 ± 
nd, from these elements, two modularity matrices: 𝐵 

± = 𝐴 

± − 𝑃 ± . In-

uitively, communities should correspond to groups of nodes that are

ohesive (mutually positively correlated). To realize this intuition, we

an define the following modularity ( Gómez et al., 2009 ): 

 

𝑠𝑖𝑔𝑛𝑒𝑑 = 

∑
𝑖𝑗 

[ 𝐵 

+ 
𝑖𝑗 
− 𝐵 

− 
𝑖𝑗 
] 𝛿( 𝜎𝑖 𝜎𝑗 ) . (4)

ptimizing this modularity returns groups of nodes that are more cor-

elated with one another than expected by chance and less internally

nticorrelated than expected by chance. 

Note that in this example, the contributions to 𝑄 

𝑠𝑖𝑔𝑛𝑒𝑑 by positive

nd negative connections are weighted equally. For networks contain-

ng approximately the same number of positive/negative connections

his may be acceptable. However, for networks with imbalances be-

ween positive/negative connection weights, this is more of a problem.

ccordingly, recent variations on this general model have aimed to bal-

nce these contributions by weighting the positive and negative terms

ifferently ( Rubinov and Sporns, 2011 ). 

A second, possibly more important limitation of this approach, is

hat the configuration model assumes independence between edges. For

tructural connectivity where there is no mathematical constraint on

onnection weights, this is not an issue (although as noted previously,

he brain’s intrinsic geometry imposes a different set of soft constraints).

owever, for correlation networks like functional connectivity, connec-

ion weights are dependent on one another. That is, given the connection

etween nodes { 𝑖, 𝑗} and { 𝑗, 𝑘 } , we can place bounds on the weight of

he connection between nodes { 𝑖, 𝑘 } . Accordingly, our null model should

lso satisfy this property. 

There exist several strategies for doing so. One possibility is construct

 generative model that operates at the level of time series and create

ynthetic data, whose correlation matrix can be computed and will sat-

sfy the transitive relationships observed in any correlation matrix. This
7 
odel can then be sampled many times, the matrices averaged, and an

xpected value for each connection estimated. This, however, is compu-

ationally expensive, and requires the user to construct the appropriate

ull model, which may not always be easy to do in the time domain.

nother possibility is to use approaches like the Hirschberger-Qi-Steuer

HQS) model ( Hirschberger et al., 2007; Zalesky et al., 2012 ) to gen-

rate admissible covariance matrices whose elements follow a specific

istribution. 

More recently, another study pointed out that the configuration

odel has a complicated interpretation in the context of correlation

etworks (appropriateness aside) ( Bazzi et al., 2016; MacMahon, Gar-

aschelli ). As an alternative, the authors suggested that a uniform null

odel may be appropriate for correlation matrices. The uniform null

odel is one in which it is assumed that every element in the network is

utually correlated with the same magnitude. That is, 𝑃 = 𝟏 ⋅ 𝛾, where

 ∈ ℝ 

𝑁×𝑁 is a matrix whose elements are all 1 and 𝛾 is the magnitude

f mutual correlation. This model performed well in benchmark anal-

ses and has the added advantage of not suffering from the resolution

imit ( Traag et al., 2011 ). Notably, this model also has a convenient

nterpretation. Communities discovered at a given 𝛾 value correspond

o groups of nodes whose mean connectivity to one another exceeds a

alue of 𝛾 on average. This truism facilitates a clearer interpretation of

he relationship between communities and the resolution parameter. 

In this section, we highlighted several strategies for modifying the

odularity equation to make it compatible with correlation matrices.

ike strategies for incorporating spatial information, these strategies

ield more conservative, but ultimately more realistic, null models that

espect the properties of correlation matrices and functional connec-

ivity. Failing to preserve low-level features of a correlation matrix

mounts to a straw man argument and increases the risk of detecting

purious or misleading community structure. An important and subtle

oint, however, concerns the relationships between null models and

o-called “generative models ” ( Betzel et al., 2016; Betzel and Bassett,

017 ). In an effort to make null models ever more realistic, one might

reserve so many features that networks generated by the null model

ery closely approximate the observed network data. If this is the case,

hen the null model has become a generative model of the network –

 simple set of rules or parameters that can be used to fully and parsi-

oniously explain a network’s organization ( Akarca et al., 2021; Shinn

t al., 2021; Vértes et al., 2012 ). This is not the aim of the null model in

odularity maximization. Rather, the goal is to hold a set of low-level

eatures constant and identify those connections that are unanticipated

iven networks that preserve only these features. While the models de-

cribed would likely never be considered true generative models, it is

ritical that, in future explorations, the spirit of null models be retained

nd that they should avoid becoming fully fledged generative models of

he network 

.2. Condition and group differences 

In the previous section, we highlighted potential null models for

odularity maximization and noted that each can be viewed as a distinct

ull hypothesis. From this perspective, modularity maximization can be

iewed analogously to the null- or point-hypothesis testing; comparing

n observation with some intuition of chance and measuring a summary

tatistic as output (it is, of course, not truly the same). Whereas the out-

ut in traditional null hypothesis testing is a 𝑝 -value, In the case of mod-

larity maximization, the output is a mapping of nodes to communities

nd a 𝑄 score. Here, the similarity between modularity maximization

nd hypothesis testing is by analogy only. However, is there a way to

se modularity maximization to perform some version of null hypoth-

sis testing, for instance in case-control studies to compare a group of

atients with controls or to contrast FC acquired during one task with

C acquired during another? In this section, we explore this question. 
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Fig. 3. Schematic illustrating how modularity maximization could be used to detect group/condition differences. Modularity maximization works by com- 

paring the connectivity that is observed with what is expected, but is flexible to how those matrices are defined. ( a ) Here, we construct a modularity matrix by 

treating the observed network to be FC estimated during movie-watching while the expected network is FC estimated at rest.( b ) This modularity matrix can be 

optimized directly to discover communities of nodes that are more strongly correlated with one another during movie-watching than at rest. ( c ) By flipping the sign 

of the matrix, we can discover groups of nodes that are more strongly correlated at rest than during movie-watching. Note that, in principal, this procedure must be 

accompanied by a statistical model to reduce the possibility of false-positives, as modularity maximization will always find communities in data, even if none exist. 
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.2.1. Comparing FC across tasks 

One way that modularity maximization could be extended to test

istinct null hypotheses is in the comparison of FC acquired during dif-

erent task states with FC at rest. For example, how does the brain’s

ommunity structure change when performing a working memory task

ompared to, say, rest? The conventional response to this question is that

he changes are subtle but systematic ( Cole et al., 2014 ). Resting state

odular organization is an optimized state, where metabolic demands

re minimized, allowing the brain to rapidly reconfigure in service of

ny forthcoming task-related processing goal ( Wig, 2017 ). Thus, FC re-

onfigures only slightly from rest-to-task and their connection weights

re highly correlated. What if we reframed the question slightly, such

hat we consider “rest ” to be our null or baseline condition – the 𝑃 in

he modularity expression – and working memory FC to be our observed

etwork – the 𝐴 matrix ( Fig. 3 )? In this case, we could construct a mod-

larity matrix: 

 = 𝐹 𝐶 𝑡𝑎𝑠𝑘 − 𝐹 𝐶 𝑟𝑒𝑠𝑡 . (5)

e could then use this matrix to recover groups of nodes whose mu-

ual connections strengthen during the working memory task compared

o rest. Interestingly, the sign of this matrix could also be flipped, so

hat 𝐵 

′ = 𝐹 𝐶 𝑟𝑒𝑠𝑡 − 𝐹 𝐶 𝑡𝑎𝑠𝑘 . In this case, the detected modules now reflect

roups of nodes whose connections are stronger at rest than during the

orking memory task. 

.2.2. Comparing connectivity between groups 

If we are willing to consider the hypothetical scenario described

bove, then there are other interesting ways that modularity maximiza-

ion can be modified to accommodate other hypotheses and research

uestions. For instance, we could use it to discover system-level differ-

nces in case-control studies, e.g. where some clinical or treatment pop-

lation gets compared against a control group ( Alexander-Bloch et al.,

010 ). In this case, we can regard the connectivity of the typical con-

rol subject as our expected connectivity pattern; the configuration of

onnection weights that represent a neuro-typical subject. The clinical

roup, on the other hand, represents what we actually observe. Using

hese two components, we can construct a modularity matrix: 

 = 𝐹 𝐶 − 𝐹 𝐶 . (6)
𝑐 𝑙𝑖𝑛𝑖𝑐 𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

8 
ptimizing modularity based on this matrix will result in communities

hose mutual connections are stronger in the clinical condition than

hey are in a neuro-typical individual. We note, of course, that we could

est the opposite hypotheses (what are the clusters of nodes that are

tronger in controls than in the clinical group?) by simply flipping the

ign of the modularity matrix or equivalently by subtracting the clinical

C from that of the controls. 

This extension of modularity maximization to test for group-level dif-

erences in meso-scale structure has yet to be explored. We note, how-

ver, that this approach can be viewed as analogous to other methods,

ost notably the network-based statistic (NBS), which uses an element-

ise statistical map (e.g. correlations or group differences of edge

eights), applies a statistical threshold, and extracts the largest supra-

hreshold component ( Zalesky et al., 2010 ). With modularity maximiza-

ion, we instead uncover subsets of nodes with changed connectivity pat-

erns. Importantly, modularity maximization makes no a priori assump-

ion about the size of these subsets. NBS, on the other hand, presumes

hat the group-level effect gets manifested in the largest connected com-

onent. 

Using modularity maximization to detect clusters of nodes whose

onnectivity changes with condition requires some additional caveats.

or instance, it requires developing methods for controlling false posi-

ives. In other words, modularity maximization will always return a par-

ition of a network into communities. If there exists element-wise differ-

nces in 𝐹 𝐶 𝑐 𝑙𝑖𝑛𝑖𝑐 𝑎𝑙 and 𝐹 𝐶 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 or 𝐹 𝐶 𝑟𝑒𝑠𝑡 and 𝐹 𝐶 𝑡𝑎𝑠𝑘 , even in the absence

f true clusters, then modularity maximization could spuriously detect

odules, i.e. find signal in noise. Controlling for this possibility requires

xquisitely accurate estimates of the connectivity matrices (likely not

ossible) or a carefully constructed null model. In the case of null mod-

ls, one possibility would be to estimate the group-level matrices using

andom permutation of group assignments. That is, one could randomly

ssign some of the clinical data as controls and vice versa , optimize the

esulting modularity, and compare the detected communities and their

uality with those generated using the true condition labels. This very

ssue, in fact, arises in applications of NBS, and is addressed using the

ame permutation strategy. As we will also illustrate in the next sections,

nother solution to mitigate false positives and facilitate the tracking of

hanges across conditions is adopting a multi-layer framework. 
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2 note that the inter-layer coupling does not have to be in this form – it could, 

in principle, be added as any pattern of off-diagonal coupling between modu- 

larity matrices 
. Multi-layer modularity maximization 

The previous two sections focused on strategies for modifying the

odularity quality function by directly changing the expected weights

f connections – the 𝑃 matrix in the equation 𝐵 = 𝐴 − 𝑃 . These changes

ransform modularity maximization from a simple community detec-

ion algorithm, into a framework for investigating some of the central

uestions in neuroscience, including the comparison of groups and ex-

erimental conditions. 

These analyses, however, also expose a feature (or perhaps limita-

ion) of modularity maximization that is shared by most other commu-

ity detection algorithms. Namely, these algorithms are designed to es-

imate communities for one network at a time. If a network’s structure

aries across time (e.g. time-varying FC Lurie et al., 2020 ), if we want to

onsider multiple subjects in a cohort ( BetzelThe community structure

f functional brain networks exhibits scale-specific patterns of inter-and

ntra-subject variability et al., 2019 ) or compare communities across

ifferent connection modalities (e.g. SC, FC, structural covariance, gene

o-expression, etc. Bentley et al., 2016 ), the standard modularity func-

ion is poorly suited for doing so. To detect modules in datasets made

p of multiple connectivity matrices requires that we extend modularity

aximization further. 

When we consider network datasets comprised of multiple connec-

ivity matrices, there are two general strategies by which they can be

nalyzed. On one hand, each of the networks can be analyzed indepen-

ently from all of the others. In the case of a multi-subject cohort, this

nvolves estimating modules for each of the subjects and then compar-

ng them at the end. However, this strategy quickly leads to problems

ligning communities from one subject to another. That is, when can

e say that communities detected using data from subjects A and B are

ealizations of the same community? With the exception of trivial cases

where the communities contain identical sets of nodes), this problem

ecomes challenging and is not easily nor unambiguously resolved, of-

en requiring that the user introduce an additional heuristic. 

The second strategy is to simply average the multiple connectivity

atrices, forming a single composite matrix. While this strategy allows

s to use well-developed community detection methods (or even the

ariants described in the previous two sections), it also results in a loss

f information; by averaging the weights of connections across many

atrices, we emphasize their average features, but lose all information

bout their variability. 

Clearly, both strategies present challenges and tradeoffs; the first is

apable of capturing inter-subject variation, but has challenges align-

ng communities from one individual to another. The second approach

s more parsimonious and circumvents the alignment problem, at the

xpense of information about how connectivity patterns (and communi-

ies) differ or vary from one matrix to the next. Which should we choose

hen? 

A third strategy for approaching this problem is to take advantage of

ulti-layer networks ( Kivelä et al., 2014 ) ( Fig. 4 a). Whereas an individ-

al connectivity matrix is a two-dimensional object that encodes pair-

ise connections among a fixed set of elements, multi-layer networks

an be conceptualized as a “stack ” of these network “slices ” or “layers ”,

orming a three-dimensional multi-layer object. Multi-layer networks

re used throughout network science ( De Domenico, 2017; Vaiana and

uldoon, 2018 ) and recently have begun to be used widely within net-

ork neuroscience, where they are typically used to study dynamic FC

 Bassett et al., 2011 ), where network organization is modeled through

 series of time-varying connectivity matrices. 

One of the principal advantages of multi-layer networks is that they

an aggregate many connectivity matrices into the same (multi-layer)

etwork model, enabling those networks to be analyzed simultaneously

ithout a loss of information. Among the many possible tools for ana-

yzing multi-layer networks is a multi-layer analog of modularity maxi-

ization ( Bazzi et al., 2016; Mucha et al., 2010 ). Although we refer to

t as an analog of the traditional single-layer modularity maximization,
9 
t is in fact identical to the single-layer method, operating on the exact

ame principles and formulation. 

Multi-layer modularity maximization works by creating a special

ind of modularity matrix. Along the diagonal of this matrix are modu-

arity matrices from individual layers; one for each of the 𝐾 single-layer

etworks we want to analyze ( Fig. 4 b). If we were to submit this matrix

o any modularity maximization algorithm nodes from different layers

ill always be assigned to different modules. That is, node 𝑖 in layer 𝑠

ould never appear in the same community as node 𝑖 in layer 𝑡 ≠ 𝑠 . This

s because there exist no cross-layer groupings of nodes that would lead

o an improvement in 𝑄 . In other words, there is no practical difference

etween this approach and the case where we analyze each network

ndependently. 

However, we can change this fact by, once again, directly modify-

ng the modularity matrix. Specifically, we can add a small amount of

eight, 𝜔 , linking node 𝑖 in layer 𝑠 to itself in other layers 2 . In fact,

e can do this for every 𝑖 ∈ [1 , … , 𝑁] ( Puxeddu et al., 2019 ). The effect

f the 𝜔 parameter is that there now exists scenarios where merging

odes from different layers can lead to improvements in modularity,

.e. Δ𝑄 > 0 . 
Because community labels are preserved from one layer to the next,

e obviate the need to align communities. Comparing communities in

ifferent layers is as simple as assessing whether their labels are or are

ot identical. When averaged across all comparisons, this measure is

eferred to as flexibility ( Bassett et al., 2011, 2013, Braun et al., 2015,

016; Chai et al., 2017; Gerraty et al., 2018 ) ( Fig. 4 g). This approach

equires no averaging procedure and so no information about individual

onnectivity matrices is lost in the process. 

In a way similar to 𝛾, we can tune 𝜔 to detect communities more

r less consistent across the slices of the multi-layer networks. Suppose

e have a multi-subject network. It can be that all the subjects belong

o a specific category, or are performing the same task, and we want

o identify a common community organization that can be associated

ith a category or task. In this case, we could use high 𝜔 values and

ncourage the algorithm to find common structures across subjects. On

he other hand, if we want to investigate inter-individual variability,

r we have a more heterogeneous group of subjects to deal with, we

re more likely to chose a low 𝜔 , that will highlight features unique

o the subjects. Multi-layer modularity optimization with 𝜔 -tuning has

een shown to be more robust to noise with respect to the single-layer

ase applied to each slice, and this is true in both conditions where we

nvestigate steady structure within the ensemble of networks, or non-

teady ones ( Puxeddu et al., 2021 ) 

Notably, however, multi-layer modularity maximization has other

dvantages, beyond simply preserving labels across layers. The addi-

ion of inter-layer coupling creates dependencies between layers so that,

rom the perspective of a given layer, global information about connec-

ivity across all/adjacent layers is balanced with local information about

 given layer to determine its community structure. The relative balance

f global/local information is scaled by the magnitude of the inter-layer

oupling parameter. In effect, we can view multi-layer modularity max-

mization as using group-level information to inform our estimates of

ommunities in each layer. In many cases, this may actually be advan-

ageous – as it helps avoid overfitting partitions to single layers, which

ay also be prone to noise and inaccuracies. 

Although applications of multi-layer community detection are be-

oming increasingly common within the network neuroscience commu-

ity, there remain (simple) opportunities for innovation. The following

ection will continue our discussion of different ways that multi-layer

odularity has been used in neuroscience while highlighting some of

he possibilities for improvement. 
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Fig. 4. Multi-layer modularity framework. ( a ) Multi-layer modularity operates on network datasets comprising many distinct connectivity matrices or “layers ”. 

( b ) To detect communities, each connectivity matrix (or more accurately, its modularity matrix) is embedded along the block diagonal of a modularity tensor (shown 

flattened here). Then, a small amount of weight is added between each node and itself across layers. When networks have some temporal ordering, these additional 

weights may only connect adjacent layers. For networks without temporal order, weights can be added all-to-all. ( c ) The modularity tensor is then passed to an 

optimization algorithm to simultaneously partition nodes in each layer into communities. The advantage of this approach is that community labels are preserved 

across layers, making it possible to directly compare nodes’ community assignments across layers. In previous applications, multi-layer modularity has been applied 

to time-varying networks ( d ) or multi-subject datasets ( e ). In these diagrams, orange and green denote modularity matrices from FC and SC, respectively. However, 

the framework allows for more complicated configurations, including incorporating SC and FC simultaneously, which allows for the inclusion of a new class of 

inter-layer coupling (SC to FC; panel f ). ( g ) Multi-layer partitions also make it possible to directly compare communities across layers using a measure of flexibility –

how frequently assignments change from layer to layer. This diagram depicts the same communities as in panel c but with rows ordered in terms of flexibility. With 

different multi-layer tensors, it is possible to calculate different versions of flexibility. In time-varying networks flexibility is calculated by comparing communities only 

between temporally adjacent layers( h ) while in multi-subject datasets, it makes sense to compare communities between all pairs of layers. ( j ) In multi-subject/multi- 

modal datasets, we can calculate different categories of flexibility. For instance, in addition to an all-to-all comparison, one could calculate the flexibility between 

FC layers or SC layers. One could also calculate SC-FC flexibility by comparing SC and FC layers within subjects. 

10 
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.1. Applications to time-varying connectivity 

Presently, applications of multi-layer modularity maximization to

euroimaging data have been narrow and largely restricted to dynamic

r time-varying networks. In these studies, each layer represents a func-

ional network that describes connectivity at a given point in time, e.g.

 narrow window in time during a scan session ( Bassett et al., 2011;

elesford et al., 2016; Yang et al., 2021 ) or a particular developmental

tage ( Puxeddu et al., 2020; Yin et al., 2020 ). 

In these examples, multi-layer modularity maximization makes it

ossible to track the formation, evolution, and dissolution of community

tructure across time. This is accomplished by adding weak connections

etween a node and itself in successive layers and using algorithms like

he Louvain algorithm to optimize this multi-layer version of 𝑄 . The

utcome, as noted earlier, is a series of community labels that are prop-

gated across layers. Because these labels are preserved from one layer

o another, comparing communities across layers is trivial. 

Again, we want to emphasize that this feature – the correspondence

f community labels across layers – is one of the principal advantages of

ulti-layer modularity maximization. Matching communities from one

artition to another is, in general, non-trivial for single-layer networks

nd in some cases is ill-posed. Consider, as an example, two networks,

ade up of four nodes. In network 1, we find those nodes all assigned

o the same community 𝜎𝑥 = { 𝐴, 𝐵, 𝐶, 𝐷} . In network 2, we find them

plit evenly into two communities 𝜎𝑦 = { 𝐴, 𝐵} and 𝜎𝑧 = { 𝐶, 𝐷} . How is

𝑥 related to 𝜎𝑦 and 𝜎𝑧 ? Does 𝜎𝑥 fracture into two novel communities or

oes it continue on through one of either 𝜎𝑦 or 𝜎𝑧 ? If so, which of the two

epresents the continuation and which represents a novel community?

r are they both novel? 

Addressing these types of questions can be challenging when com-

unities are detected using single-layer modularity maximization. In

ll but the most trivial cases, matching communities across partitions

equires the inclusion of some additional heuristic, e.g. to “break ties ”

ike those described above. Multi-layer modularity maximization, on

he other hand, incurs a greater up-front computational cost (increased

emory to store multilayer networks, greater runtime to estimate com-

unities), but automatically tracks communities across layers, effec-

ively solving the matching problem. In doing so, it facilitates the calcu-

ation of a large suite of metrics, including flexibility ( Fig. 4 g), which

easures how often a node changes communities from one layer to

he next. Flexibility, in particular, has been used in many contexts, and

as been linked to learning rate ( Bassett et al., 2011 ), mood and affect

 Betzel et al., 2017 ), clinical status ( Braun et al., 2016 ), and executive

unction ( Braun et al., 2015 ), among others. Note that multi-layer and

ingle-layer modularity maximization are mathematically identical op-

rations, and that the increased computational burden is a consequence

f the size of the multi-layer modularity matrix, e.g. the need for addi-

ional random access memory, and, in the case of the Louvain algorithm,

ot the optimization heuristic itself ( Lancichinetti and Fortunato, 2009 ).

.2. Applications to multi-subject, multi-task, and dense sampling datasets 

While most applications of multi-layer modularity maximization and

exibility analysis have been to time-varying FC, they have also be ap-

lied in other contexts. For instance, to investigate differences in modu-

ar structure across task state and across subjects ( BetzelThe community

tructure of functional brain networks exhibits scale-specific patterns

f inter-and intra-subject variability et al., 2019 ). Just like with time-

arying connectivity, multi-layer modularity can be used to detect mod-

les in networks where layers represent connectivity estimated under

ifferent conditions (e.g. different tasks in the scanner) or even differ-

nt individuals ( Fig. 4 e). As with applications to time-varying connec-

ivity, flexibility analyses can be used to characterize changes in com-

unity structure across layers. In this case, however, the interpretation

hanges – flexibility becomes a measure task-induced reconfiguration

r inter-subject stability of communities. Note that one could also com-
11 
ine these two approaches and use multi-layer modularity to investi-

ate changes in modular structure in multiple brains across time. This

pproach might be especially useful in studies using naturalistic stimuli

 Betzel et al., 2020; Finn and Bandettini, 2021; Sonkusare et al., 2019 ),

r hyperscanning experiments, in which brain activity is recorded si-

ultaneously from two (or more) individuals while interacting with one

nother ( Babiloni and Astolfi, 2014; Dumas et al., 2011 ). 

Interestingly, flexibility can be broken down into components by

omparing specific pairs of layers. Suppose, for instance, that a dataset

as comprised of a control and clinical population. You could measure

he flexibility (community dissimilarity) separately between all pairs of

ontrol and clinical subjects and then within both populations. These

alues could then be evaluated further using basic statistics to compare

he variability of communities within and between populations. This

pproach could also be especially powerful in dense-sampling studies,

here subjects are scanned many times in order to better characterize

heir subject-specific organization. In these types of studies, one could

reat connectivity derived from repeated scans of many subjects and con-

itions and subsequently calculate different versions of flexibility. For

nstance, one could calculate flexibility only comparing communities

ithin subjects to estimate the within-subject variability of communi-

ies. This would allow a user to trivially generate spatial maps of regions

nd the baseline variability of their community assignments within sub-

ects. The same could be done between subjects, between conditions,

nd for different combinations. In spirit, this flexibility analysis is simi-

ar to other studies that have examined variability of FC patterns to as-

ertain what factors account for their variability ( Gratton et al., 2018 ). 

.3. Multi-layer community detection for multi-modal datasets 

There are yet other ways that multilayer modularity maximization

ould be further extended. For instance, one interesting application in-

olves treating different connectivity modalities as layers ( Bentley et al.,

016; Betzel et al., 2019 ). For instance, one could assemble a multi-

ayer network from structural and functional connectivity, along with

orphometric and transcriptomic similarity matrices and cluster them

imultaneously. Importantly, consideration should be taken that the

eights of the matrices are comparable. If one layer has much stronger

eights than the others, it will tend to contribute disproportionately to

he multi-layer modularity and impact estimates of modular structure

rom other layers. 

Looking even further into the future, one could also imagine jointly

etecting communities using multi-modal data from many different sub-

ects ( Fig. 4 f). A clear example is the case where one has a dataset of

C and FC matrices from many different individuals. As before, ensur-

ng that the total weight of each layer and modality are comparable to

ne another is important. For instance, while SC matrices are usually

parse and made of positive weights, FC matrices are fully connected

nd made of positive and negative weights. This difference can be over-

ome by transforming the SC matrix into a structural correlation matrix

y computing the Pearson’s correlation between each pair of rows. In

his way, the weights of both SC and FC would fall within the same

ange ( Amico and Goñi, 2018 ). The user also has the opportunity to

e creative in terms of how the inter-layer coupling parameter, 𝜔 , is

ntroduced. For instance, one might imagine only coupling structural

atrices to structural matrices across individuals but, within subjects,

ntroducing a new parameter that governs the subject-specific coupling

f structural and functional connectivity to one another. 

When the inter-subject coupling of FC-to-FC or SC-to-SC is strong

nd the SC-to-FC coupling weak, optimizing the multi-layer modularity

ill return group-representative partitions for both SC and FC. How-

ver, as we increase the coupling between SC and FC at the subject

evel we also force the modularity maximization algorithm to detect

odular structures that are shared between the two modalities. Again,

his procedure allows for the calculating various flexibilities, including

he flexibility between SC and FC, both globally (considering all sub-
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ects) and at the micro-level of individual subjects. These subject-level

easures of structure-function coupling could be used as phenotypical

easures of an individual and their variation tracked over the course of

evelopment, across tasks, or clinical assessments. 

. Outlook and concluding remarks 

This prospective article deals with brain network communities and

ocuses specifically on the modularity maximization heuristic. We argue

hat, despite its widespread application and success, modularity maxi-

ization has, so far, been applied narrowly within neuroscience and

ften without taking into account domain-specific knowledge. We high-

ight several simple strategies for broadening and extending the mod-

larity maximization framework by directly modifying the modularity

atrix to incorporate realistic features of brain networks, including spa-

ial dependences between connections and the preservation of statistical

elationships among connections. The primary aim of this work is not to

resent new findings or to overturn previous observations, but to draw

ttention to these modifications with the hope that they encourage users

o creatively explore modifications of modularity maximization, leading

o new neuroscientific insight. 

Community structure is omnipresent across networks ( Newman,

012 ). Detecting this structure and designing new algorithms to do so

s of great interest to practitioners and theoreticians, alike ( Fortunato

nd Hric, 2016; Leskovec et al., 2009 ). Like other clustering algorithms,

ommunity detection reduces the dimensionality of large complex sys-

ems, identifies patterns, uncovers functionally-related groups of nodes,

iagnoses node roles, and broadly generates new insight into system

rganization and function, prompting new scientific hypotheses. 

Community detection is also important for neuroscience ( Meunier

t al., 2009; Sporns and Betzel, 2016 ). Shifts in data-sharing practices

ave generated massive, publicly-available datasets that include imag-

ng data from thousands of individuals ( Horien et al., 2021; Van Es-

en et al., 2013 ). In parallel, advances in cellular-level recordings have

ade it possible to record from up to millions of neurons simultaneously

 Demas et al., 2021 ). Making sense of these data requires flexible tools

or dimension reduction and for extracting neurobiologically meaning-

ul features that can be propagated to secondary analyses. 

Indeed, community detection, in general, and modularity maximiza-

ion, specifically, have been applied to brain data at virtually all spa-

iotemporal scales, offering a convenient method for partitioning ner-

ous systems into communities. However, in almost every instance,

hese applications have leveraged an “out-of-the-box ” version of modu-

arity maximization. On one hand, the fact that neuroscientific insight

an be gleaned in this way is a testament to the universality of network

cience and the tools used to interrogate networks. Modularity maxi-

ization was designed to be generic and not necessarily with brain net-

orks in mind. On the other hand, this leaves lots of room for improve-

ent. As noted earlier, the generic version of modularity maximization

eatures a null model that is poorly-suited for both SC an FC, where it

ails to preserve basic features of brain networks or outright violates

tatistical truisms. 

The aim of this article, however, is not to wag a finger at past appli-

ations of modularity maximization. Rather, we endeavor to highlight

everal strategies for extending modularity maximization so that future

pplications can make stronger and more nuanced scientific claims and

arget increasingly specific research questions. Additionally, we want to

ighlight the components of modularity maximization – null models,

ulti-layer formulations, parameterizations – that are fundamentally

eft up to the user and to encourage exploration of these components.

t is our view that the utility of “out-of-the-box ” and generic methods,

lthough they been used to make important contributions up to this

oint, is limited and can only carry the field so far. Future work must be

irected to link data-driven and network science methods with domain-

pecific knowledge from neuroscience. In the following paragraphs, we
12 
over several topics that are within the scope of this prospective article

ut were not discussed in depth in the main text. 

Occasionally, modularity maximization may place some nodes into

solated communities referred to as “singletons. ” In general, there are

everal reasons why singletons might appear. If a network has been spar-

ified by thresholding weak/inconsistent connections, it is possible that

he resulting network fragments into disconnected components, some of

hich may comprise only a single node. In this case, a simple solution

s to construct a maximum spanning tree (ensuring connectedness) and

dding to this network the strongest and/or most consistent connections

o reach a desired threshold. Another reason why a node might be par-

itioned into a singleton community is that all its connections to the rest

f the network are weaker than would be expected under the null con-

ectivity model. This type of singleton can often be reincorporated into

 larger community by changing the value of the resolution parameter,

. Alternatively, the multi-layer approach can also help avoid this issue.

n the multi-layer framework, information about other layers is used to

etermine the community structure for any single layer. Even if a node

s disconnected, makes weak connections to the rest of the network, or

he inter-layer coupling parameter is sufficiently strong, it may be ad-

antageous from the perspective of the multi-layer modularity function

o incorporate that node into a larger community. Of course, a final pos-

ibility is that a singleton community reflects a true architectural feature

f a network. It could represent a brain area that, under a specific set of

onditions (task, disease, etc.) dissociates from the rest of the network. 

The focus of this article has been on modularity maximization, and

or good reason. It operates according to an eminently simple principle,

eeking communities of nodes whose internal density of connections is

aximally greater than what would be expected under a chance model.

odularity maximization is a relatively old method ( Newman and Gir-

an, 2004 ) and has been applied in virtually every scientific domain in

hich networks have made ingress. Optimizing modularity yields com-

unities that are strictly assortative – nodes in the same community

re more likely to connect to other nodes in the same community than

o nodes in other communities. This type of organization, however, is

ne of many possible types of community configurations. Among these

re disassortative – where nodes in the same community preferentially

void making connections to one another – and core-periphery struc-

ure, where a densely connected core projects to a periphery and the

eripheral nodes avoid making connections to other peripheral nodes.

odularity maximization is incapable of resolving these types of orga-

ization. 

However, there exist many other methods that are capable of discov-

ring non-assortative communities. Among the most popular methods

s the stochastic blockmodel, which seeks to discover groups of nodes

hose connectivity patterns are similar to one another. This allows for

he possibility that groups of nodes are not connected to one another but

onetheless exhibit similar connectivity profiles, e.g. core-periphery or

isassortative communities ( Betzel et al., 2018; Faskowitz et al., 2018;

oyer et al., 2015 ). 

Unlike modularity maximization (and Infomap), blockmodels can

exibly detect different categories of community interactions. This is

n important point; modularity and Infomap are capable of detecting

nly assortative communities. If the aim is to obtain an estimate of the

rain’s true community structure, we might expect these methods to

erform reasonably well, provided those ground-truth communities are

ssortative. However, if the brain deviates from this type of organiza-

ion, then modularity and Infomap may perform poorly and misclassify

odes’ communities. Indeed, these misclassifications can further impact

ur understanding of the brain’s organization and function. Misclassified

odes may make connections outside of the assortative community to

hich they are assigned, giving the impression that they are integrative

ubs that span modules. A blockmodel, however, might discover a more

arsimonious description of communities where these putative “hubs ”

re grouped together with other hubs and form far fewer cross-module

inks ( Pavlovic et al., 2014 ). Additionally, blockmodels are, effectively,
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enerative models of a network and serve as a powerful way of perform-

ng posterior predictive checks – i.e. simulating data from the fit model

which can be used to assess how well the model recapitulates the ob-

erved network and to identify features that are not accounted for by

he current model ( Gelman et al., 2013 ). 

In general, no community detection algorithm is privileged over the

thers, including modularity maximization. Community detection can

e viewed as an inversion of some generative function for networks that

epends on nodes’ latent community assignments. Different algorithms

nd methods effectively “guess ” at what that function is to produce esti-

ates of communities. However, there is almost always a many-to-one

apping of a fixed set of communities to a given network and, similarly,

here may be different sets of communities that, through different gen-

rative functions, explain the observed network equally well ( Peel et al.,

017 ). Unless one knows the true generative function, then it is impossi-

le to determine with certainty which method and its inferred commu-

ities is optimal. One might imagine that this issue could be addressed

y cross-validating with respect to some additional data, e.g. verifying

hat detected structural communities are enriched for functional con-

ectivity or gene coexpression patterns. However, this strategy suffers

rom the same issue, in that there may exist multiple mappings between

hese additional data and the detected communities. In short, these ob-

ervations motivate exploring multiple community detection algorithms

nd not weighting the results of any single algorithm heavily, but focus-

ng instead on communities that are shared and robust, but also points

f frustration, where different algorithms fail to arrive at consensus. 

Since the recent explosion of interest in networks, neuroscience has

epeatedly borrowed methodology from network science proper. Small-

orlds, hubs, rich-clubs, and modules are concepts that make sense for

rain network data, but the tools used to detect these types of structures

riginated in network science, often with applications to other systems

n mind, e.g. social networks. While we focus here on extending one

f these tools, this represents only the first steps. A key challenge for

he future is to reverse this directionality and to develop analysis tools

hat are specific to nervous systems, taking into account their genera-

ive mechanisms, peculiarities, and domain-specific knowledge. Doing

o creates bridges with other sub-disciplines in the computational neu-

osciences, opening up opportunities for increasingly sophisticated ex-

loration of brain network organization. Specifically, modularity maxi-

ization presents a flexible framework for exploring community struc-

ure in brain networks. It allows for the user to test and compare com-

unities detected under distinct null hypotheses, identifying common-

lities and idiosyncrasies. While these types of approaches can some-

imes lead to confusion – comparing modules detected using different

ull models may present issues with interpretation – they also help fa-

ilitate neuroscientific discovery, helping us to identify what is being

ost/gained by choosing increasingly domain-specific null models, while

ffering new perspectives and insight on the organization and function

f brain networks. 

.1. Software 

Matlab code for implementing the models discussed in the paper can

e found via the following link: https://github.com/brain-networks/

onstandard _ modularity _ maximization . 

cknowledgment 

RFB wrote initial draft of manuscript. All authors edited and revised

anuscript and contributed and tested code. 

eferences 

dachi, Y. , Osada, T. , Sporns, O. , Watanabe, T. , Matsui, T. , Miyamoto, K. , Miyashita, Y. ,

2012. Functional connectivity between anatomically unconnected areas is shaped

by collective network-level effects in the macaque cortex. Cereb. Cortex 22 (7),

1586–1592 . 
13 
hn, Y.-Y. , Bagrow, J.P. , Lehmann, S. , 2010. Link communities reveal multiscale com-

plexity in networks. Nature 466 (7307), 761–764 . 

karca, D. , Vértes, P.E. , Bullmore, E.T. , Astle, D.E. , 2021. A generative network model

of neurodevel- opmental diversity in structural brain organization. Nat. Commun. 12

(1), 1–18 . 

kiki, T.J. , Abdallah, C.G. , 2019. Determining the hierarchical architecture of the human

brain using subject-level clustering of functional networks. Sci. Rep. 9 (1), 1–15 . 

lexander-Bloch, A.F. , Gogtay, N. , Meunier, D. , Birn, R. , Clasen, L. , Lalonde, F. , Len-

root, R. , Giedd, J. , Bullmore, E.T. , 2010. Disrupted modularity and local connectivity

of brain functional networks in childhood-onset schizophrenia. Front. Syst. Neurosci.

4, 147 . 

mico, E. , Goñi, J. , 2018. Mapping hybrid functional-structural connectivity traits in the

human connectom. Netw. Neurosci. 2 (3), 306–322 . 

renas, A. , Fernandez, A. , Gomez, S. , 2008. Analysis of the structure of complex networks

at different resolution levels. New J. Phys. 10 (5), 053039 . 

vena-Koenigsberger, A. , Misic, B. , Sporns, O. , 2018. Communication dynamics in com-

plex brain networks. Nat. Rev. Neurosci. 19 (1), 17 . 

abiloni, F. , Astolfi, L. , 2014. Social neuroscience and hyperscanning techniques: past,

present and future. Neurosci. Biobehav. Rev. 44, 76–93 . 

assett, D.S. , Bullmore, E. , 2006. Small-world brain networks. Neuroscientist 12 (6),

512–523 . 

assett, D.S. , Greenfield, D.L. , Meyer-Lindenberg, A. , Weinberger, D.R. , Moore, S.W. , Bull-

more, E.T. , 2010. Efficient physical embedding of topologically complex informa-

tion processing networks in brains and computer circuits. PLoS Comput. Biol. 6 (4),

e1000748 . 

assett, D.S. , Porter, M.A. , Wymbs, N.F. , Grafton, S.T. , Carlson, J.M. , Mucha, P.J. , 2013.

Robust detection of dynamic community structure in networks. Chaos 23 (1), 013142 .

assett, D.S. , Wymbs, N.F. , Porter, M.A. , Mucha, P.J. , Carlson, J.M. , Grafton, S.T. , 2011.

Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad.

Sci. 108 (18), 7641–7646 . 

aum, G.L. , Ciric, R. , Roalf, D.R. , Betzel, R.F. , Moore, T.M. , Shinohara, R.T. , Kahn, A.E. ,

Vandekar, S.N. , Rupert, P.E. , Quarmley, M. , et al. , 2017. Modular segregation of struc-

tural brain networks supports the development of executive function in youth. Curr.

Biol. 27 (11), 1561–1572 . 

aum, G.L. , Cui, Z. , Roalf, D.R. , Ciric, R. , Betzel, R.F. , Larsen, B. , Cieslak, M. , Cook, P.A. ,

Xia, C.H. , Moore, T.M. , et al. , 2020. Development of structure–function coupling in

human brain networks during youth. Proc. Natl. Acad. Sci. 117 (1), 771–778 . 

azzi, M. , Porter, M.A. , Williams, S. , McDonald, M. , Fenn, D.J. , Howison, S.D. , 2016. Com-

munity detection in temporal multilayer networks, with an application to correlation

networks. Multiscale Model. Simul. 14 (1), 1–41 . 

ellec, P. , Perlbarg, V. , Jbabdi, S. , Pélégrini-Issac, M. , Anton, J.-L. , Doyon, J. , Benali, H. ,

2006. Identification of large-scale networks in the brain using fmri. NeuroImage 29

(4), 1231–1243 . 

alesky, A. , Fornito, A. , Bullmore, E.T. , 2010. Network-based statistic: identifying differ-

ences in brain networks. NeuroImage 53 (4), 1197–1207 . 

alesky, A. , Fornito, A. , Bullmore, E. , 2012. On the use of correlation as a measure of

network connectivity. NeuroImage 60 (4), 2096–2106 . 

etzel, R. F., 2020 arXiv preprint arXiv:2011.06723 

entley, B. , Branicky, R. , Barnes, C.L. , Chew, Y.L. , Yemini, E. , Bullmore, E.T. , Vértes, P.E. ,

Schafer, W.R. , 2016. The multilayer connectome of caenorhabditis elegans. PLoS Com-

put. Biol. 12 (12), e1005283 . 

etzel, R.F. , Avena-Koenigsberger, A. , Goñi, J. , He, Y. , De Reus, M.A. , Griffa, A. ,

Vértes, P.E. , Mi š ic, B. , Thiran, J.-P. , Hagmann, P. , et al. , 2016. Generative models

of the human connectome. NeuroImage 124, 1054–1064 . 

etzel, R.F. , Bassett, D.S. , 2017. Generative models for network neuroscience: prospects

and promise. J. R. Soc. Interface 14 (136), 20170623 . 

etzel, R.F. , Byrge, L. , Esfahlani, F.Z. , Kennedy, D.P. , 2020. Temporal fluctuations in the

brain’s modular architecture during movie-watching. NeuroImage 116687 . 

etzel, R.F. , Byrge, L. , He, Y. , Goñi, J. , Zuo, X.-N. , Sporns, O. , 2014. Changes in structural

and functional connectivity among resting-state networks across the human lifespan.

NeuroImage 102, 345–357 . 

etzel, R.F. , Griffa, A. , Hagmann, P. , Mi š i ć, B. , 2019. Distance-dependent consensus

thresholds for generating group-representative structural brain networks. Netw. Neu-

rosci. 3 (2), 475–496 . 

etzel, R.F. , Medaglia, J.D. , Bassett, D.S. , 2018. Diversity of meso-scale architecture in

human and non- human connectomes. Nat. Commun. 9 (1), 1–14 . 

etzel, R.F. , Medaglia, J.D. , Kahn, A.E. , Soffer, J. , Schonhaut, D.R. , Bassett, D.S. , 2019.

Struc- tural, geometric and genetic factors predict interregional brain connectivity

patterns probed by electrocorticography. Nat. Biomed. Eng. 3 (11), 902–916 . 

etzel, R.F. , Medaglia, J.D. , Papadopoulos, L. , Baum, G.L. , Gur, R. , Gur, R. , Roalf, D. , Sat-

terthwaite, T.D. , Bassett, D.S. , 2017. The modular organization of human anatomical

brain networks: Accounting for the cost of wiring. Netw. Neurosci. 1 (1), 42–68 . 

etzel, R.F. , Satterthwaite, T.D. , Gold, J.I. , Bassett, D.S. , 2017. Positive affect, surprise,

and fatigue are correlates of network flexibility. Sci. Rep. 7 (1), 1–10 . 

etzelThe community structure of functional brain networks exhibits scale-specific pat-

terns of inter-and intra-subject variability, R.F. , Bertolero, M.A. , Gordon, E.M. , Grat-

ton, C. , Dosenbach, N.U. , Bassett, D.S. , 2019. NeuroImage 202, 115990 . 

londel, V.D. , Guillaume, J.-L. , Lambiotte, R. , Lefebvre, E. , 2008. Fast unfolding of com-

munities in large networks. J. Stat. Mech. 2008 (10), P10008 . 

raun, U. , Schäfer, A. , Bassett, D.S. , Rausch, F. , Schweiger, J.I. , Bilek, E. , Erk, S. , Ro-

manczuk-Seiferth, N. , Grimm, O. , Geiger, L.S. , et al. , 2016. Dynamic brain network

reconfiguration as a potential schizophrenia genetic risk mechanism modulated by

nmda receptor function. Proc. Natl. Acad. Sci. 113 (44), 12568–12573 . 

raun, U. , Schäfer, A. , Walter, H. , Erk, S. , Romanczuk-Seiferth, N. , Haddad, L. ,

Schweiger, J.I. , Grimm, O. , Heinz, A. , Tost, H. , et al. , 2015. Dynamic reconfiguration

https://github.com/brain-networks/nonstandard_modularity_maximization
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0131
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0131
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0131
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0131
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0130
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0130
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0130
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0130
http://arxiv.org/abs/2011.06723
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032


F. Zamani Esfahlani, Y. Jo, M.G. Puxeddu et al. NeuroImage 244 (2021) 118607 

 

B  

B  

B  

C  

 

C  

C  

 

 

D  

D  

 

D  

 

D  

 

 

D  

D  

 

E  

 

E  

E  

E  

F  

 

F  

F  

F

F  

F  

F  

G  

G  

 

G  

 

G  

G  

G  

 

G  

 

 

G  

H  

H  

 

H  

 

H  

 

H  

 

H  

 

H  

 

 

H  

H  

 

 

J  

 

J  

K  

L

K  

L  

L  

L  

 

M

L  

 

 

M  

 

 

M  

M  

M  

 

 

M  

 

N  

N  

O  

 

P  

P  

P  

 

P  

P  

P  

P  

P  

 

P  

 

P  

 

of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci.

112 (37), 11678–11683 . 

rodmann, K. , 1909. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren

Prinzipien dargestellt auf Grund des Zellenbaues. Barth . 

ullmore, E. , Sporns, O. , 2009. Complex brain networks: graph theoretical analysis of

structural and functional systems. Nat. Rev. Neurosci. 10 (3), 186–198 . 

urt, J.B. , Helmer, M. , Shinn, M. , Anticevic, A. , Murray, J.D. , 2020. Generative modeling

of brain maps with spatial autocorrelation. NeuroImage 220, 117038 . 

hai, L.R. , Khambhati, A.N. , Ciric, R. , Moore, T.M. , Gur, R.C. , Gur, R.E. , Satterth-

waite, T.D. , Bassett, D.S. , 2017. Evolution of brain network dynamics in neurode-

velopment. Netw. Neurosci. 1 (1), 14–30 . 

ole, M.W. , Bassett, D.S. , Power, J.D. , Braver, T.S. , Petersen, S.E. , 2014. Intrinsic and

task-evoked network architectures of the human brain. Neuron 83 (1), 238–251 . 

rossley, N.A. , Mechelli, A. , Vértes, P.E. , Winton-Brown, T.T. , Patel, A.X. , Ginestet, C.E. ,

McGuire, P. , Bullmore, E.T. , 2013. Cognitive relevance of the community structure

of the human brain functional coactivation network. Proc. Natl. Acad. Sci. 110 (28),

11583–11588 . 

e Domenico, M. , 2017. Multilayer modeling and analysis of human brain networks. Giga

Sci. 6 (5), gix004 . 

eco, G. , McIntosh, A.R. , Shen, K. , Hutchison, R.M. , Menon, R.S. , Everling, S. , Hag-

mann, P. , Jirsa, V.K. , 2014. Identification of optimal structural connectivity using

functional connectivity and neural modeling. J. Neurosci. 34 (23), 7910–7916 . 

emas, J. , Manley, J. , Tejera, F. , Kim, H. , Traub, F.M. , Chen, B. , Vaziri, A. , 2021. High-

-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using

light beads microscopy. bioRxiv . 

esikan, R.S. , Ségonne, F. , Fischl, B. , Quinn, B.T. , Dickerson, B.C. , Blacker, D. , Buck-

ner, R.L. , Dale, A.M. , Maguire, R.P. , Hyman, B.T. , et al. , 2006. An automated labeling

system for subdividing the human cerebral cortex on mri scans into gyral based re-

gions of interest. NeuroImage 31 (3), 968–980 . 

oron, K.W. , Bassett, D.S. , Gazzaniga, M.S. , 2012. Dynamic network structure of inter-

hemispheric coordi- nation. Proc. Natl. Acad. Sci. 109 (46), 18661–18668 . 

umas, G. , Lachat, F. , Martinerie, J. , Nadel, J. , George, N. , 2011. From social behaviour to

brain synchronization: review and perspectives in hyperscanning. Irbm 32 (1), 48–53 .

rcsey-Ravasz, M. , Markov, N.T. , Lamy, C. , Van Essen, D.C. , Knoblauch, K. , Toroczkai, Z. ,

Kennedy, H. , 2013. A predictive network model of cerebral cortical connectivity based

on a distance rule. Neuron 80 (1), 184–197 . 

sfahlani, F.Z. , Bertolero, M.A. , Bassett, D.S. , Betzel, R.F. , 2020. Space-independent com-

munity and hub structure of functional brain networks. NeuroImage 211, 116612 . 

vans, T. , Lambiotte, R. , 2009. Line graphs, link partitions, and overlapping communities.

Phys. Rev. E 80 (1), 016105 . 

xpert, P. , Evans, T.S. , Blondel, V.D. , Lambiotte, R. , 2011. Uncovering space-independent

communities in spatial networks. Proc. Natl. Acad. Sci. 108 (19), 7663–7668 . 

askowitz, J. , Esfahlani, F.Z. , Jo, Y. , Sporns, O. , Betzel, R.F. , 2020. Edge-centric functional

network representations of human cerebral cortex reveal overlapping system-level

architecture. Nat. Neurosci. 23 (12), 1644–1654 . 

askowitz, J. , Yan, X. , Zuo, X.-N. , Sporns, O. , 2018. Weighted stochastic block models of

the human con- nectome across the life span. Sci. Rep. 8 (1), 1–16 . 

inn, E.S. , Bandettini, P.A. , 2021. Movie-watching outperforms rest for functional connec-

tivity-based prediction of behavior. NeuroImage 235, 117963 . 

ortunato, S. , 2010. Community detection in graphs. Phys. Rep. 486 (3–5), 75–174 . 

ortunato, S. , Barthelemy, M. , 2007. Resolution limit in community detection. Proc. Natl.

Acad. Sci. 104 (1), 36–41 . 

ortunato, S. , Hric, D. , 2016. Community detection in networks: A user guide. Phys. Rep.

659, 1–44 . 

riston, K.J. , 1994. Functional and effective connectivity in neuroimaging: a synthesis.

Hum. Brain Mapp. 2 (1–2), 56–78 . 

elman, A. , Carlin, J.B. , Stern, H.S. , Dunson, D.B. , Vehtari, A. , Rubin, D.B. , 2013. Bayesian

Data Analysis. CRC press . 

erraty, R.T. , Davidow, J.Y. , Foerde, K. , Galvan, A. , Bassett, D.S. , Shohamy, D. , 2018. Dy-

namic flexibility in striatal-cortical circuits supports reinforcement learning. J. Neu-

rosci. 38 (10), 2442–2453 . 

ollo, L.L. , Roberts, J.A. , Cropley, V.L. , Di Biase, M.A. , Pantelis, C. , Zalesky, A. , Breaks-

pear, M. , 2018. Fragility and volatility of structural hubs in the human connectome.

Nat. Neurosci. 21 (8), 1107–1116 . 

ómez, S. , Jensen, P. , Arenas, A. , 2009. Analysis of community structure in networks of

correlated data. Phys. Rev. E 80 (1), 016114 . 

ood, B.H. , De Montjoye, Y.-A. , Clauset, A. , 2010. Performance of modularity maximiza-

tion in practical contexts. Phys. Rev. E 81 (4), 046106 . 

ordon, E.M. , Laumann, T.O. , Adeyemo, B. , Huckins, J.F. , Kelley, W.M. , Petersen, S.E. ,

2016. Generation and evaluation of a cortical area parcellation from resting-state

correlations. Cereb. Cortex 26 (1), 288–303 . 

ratton, C. , Laumann, T.O. , Nielsen, A.N. , Greene, D.J. , Gordon, E.M. , Gilmore, A.W. ,

Nelson, S.M. , Coalson, R.S. , Snyder, A.Z. , Schlaggar, B.L. , et al. , 2018. Functional

brain networks are dominated by stable group and individual factors, not cognitive

or daily variation. Neuron 98 (2), 439–452 . 

uimera, R. , Amaral, L.A.N. , 2005. Functional cartography of complex metabolic net-

works. Nature 433 (7028), 895–900 . 

agmann, P. , Cammoun, L. , Gigandet, X. , Meuli, R. , Honey, C.J. , Wedeen, V.J. , Sporns, O. ,

2008. Mapping the structural core of human cerebral cortex. PLoS Biol. 6 (7), e159 . 

arris, J.A. , Mihalas, S. , Hirokawa, K.E. , Whitesell, J.D. , Choi, H. , Bernard, A. , Bohn, P. ,

Caldejon, S. , Casal, L. , Cho, A. , et al. , 2019. Hierarchical organization of cortical and

thalamic connectivity. Nature 575 (7781), 195–202 . 

irschberger, M. , Qi, Y. , Steuer, R.E. , 2007. Randomly generating portfolio-selection co-

variance matrices with specified distributional characteristics. Eur. J. Oper. Res. 177

(3), 1610–1625 . 
14 
oney, C.J. , Kötter, R. , Breakspear, M. , Sporns, O. , 2007. Network structure of cerebral

cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci.

104 (24), 10240–10245 . 

oney, C.J. , Sporns, O. , Cammoun, L. , Gigandet, X. , Thiran, J.-P. , Meuli, R. , Hagmann, P. ,

2009. Predicting human resting-state functional connectivity from structural connec-

tivity. Proc. Natl. Acad. Sci. 106 (6), 2035–2040 . 

orien, C. , Noble, S. , Greene, A.S. , Lee, K. , Barron, D.S. , Gao, S. , O’Connor, D. , Salehi, M. ,

Dadashkarimi, J. , Shen, X. , et al. , 2021. A hitchhiker’s guide to working with large,

open-source neuroimaging datasets. Nat. Hum. Behav. 5 (2), 185–193 . 

orvát, S. , G ăm ănut, R. , Ercsey-Ravasz, M. , Magrou, L. , G ăm ănut, B. , Van Essen, D.C. ,

Burkhalter, A. , Knoblauch, K. , Toroczkai, Z. , Kennedy, H. , 2016. Spatial embedding

and wiring cost constrain the functional layout of the cortical network of rodents and

primates. PLoS Biol. 14 (7), e1002512 . 

orwitz, B. , 2003. The elusive concept of brain connectivity. NeuroImage 19 (2), 466–470 .

utchison, R.M. , Womelsdorf, T. , Allen, E.A. , Bandettini, P.A. , Calhoun, V.D. , Cor-

betta, M. , Della Penna, S. , Duyn, J.H. , Glover, G.H. , Gonzalez-Castillo, J. , et al. , 2013.

Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage

80, 360–378 . 

utla, I. S., Jeub, L. G., Mucha, P. J., 2011. A generalized Louvain method for community

detection implemented in MATLAB. URL http://netwiki.amath.unc.edu/GenLouvain .

eub, L.G. , Sporns, O. , Fortunato, S. , 2018. Multiresolution consensus clustering in net-

works. Sci. Rep. 8 (1), 1–16 . 

enett, Y.N. , Betzel, R.F. , Beaty, R.E. , 2020. Community structure of the creative brain at

rest. NeuroImage 210, 116578 . 

ambiotte, R., Delvenne, J.-C., Barahona, M., 2008. arXiv preprint arXiv:0812.1770 

ivelä, M. , Arenas, A. , Barthelemy, M. , Gleeson, J.P. , Moreno, Y. , Porter, M.A. , 2014.

Multilayer networks. J. Complex Netw. 2 (3), 203–271 . 

ancichinetti, A. , Fortunato, S. , 2009. Community detection algorithms: a comparative

analysis. Phys. Rev. E 80 (5), 056117 . 

ancichinetti, A. , Fortunato, S. , 2012. Consensus clustering in complex networks. Sci. Rep.

2 (1), 1–7 . 

eskovec, J. , Lang, K.J. , Dasgupta, A. , Mahoney, M.W. , 2009. Community structure in

large networks: Natural cluster sizes and the absence of large well-defined clusters.

Internet Math. 6 (1), 29–123 . 

acMahon, M., Garlaschelli, D., 2013. arXiv preprint arXiv:1311.1924 

urie, D.J. , Kessler, D. , Bassett, D.S. , Betzel, R.F. , Breakspear, M. , Kheilholz, S. , Kucyi, A. ,

Liégeois, R. , Lindquist, M.A. , McIntosh, A.R. , et al. , 2020. Questions and controversies

in the study of time-varying functional connectivity in resting fmri. Netw. Neurosci.

4 (1), 30–69 . 

arkov, N.T. , Ercsey-Ravasz, M. , Ribeiro Gomes, A. , Lamy, C. , Magrou, L. , Vezoli, J. ,

Misery, P. , Falchier, A. , Quilodran, R. , Gariel, M. , et al. , 2014. A weighted and di-

rected interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24

(1), 17–36 . 

edaglia, J.D. , Lynall, M.-E. , Bassett, D.S. , 2015. Cognitive network neuroscience. J. Cogn.

Neurosci. 27 (8), 1471–1491 . 

eunier, D. , Lambiotte, R. , Fornito, A. , Ersche, K. , Bullmore, E.T. , 2009. Hierarchical

modularity in human brain functional networks. Front Neuroinform 3, 37 . 

oyer, D. , Gutman, B. , Prasad, G. , Faskowitz, J. , Ver Steeg, G. , Thompson, P. , 2015.

Blockmodels for connectome analysis. In: 11th International Symposium on Medi-

cal Information Processing and Analysis, vol. 9681. International Society for Optics

and Photonics, p. 96810A . 

ucha, P.J. , Richardson, T. , Macon, K. , Porter, M.A. , Onnela, J.-P. , 2010. Community

structure in time-dependent, multiscale, and multiplex networks. Science 328 (5980),

876–878 . 

ewman, M.E. , 2012. Communities, modules and large-scale structure in networks. Nat.

Phys. 8 (1), 25–31 . 

ewman, M.E. , Girvan, M. , 2004. Finding and evaluating community structure in net-

works. Phys. Rev. E 69 (2), 026113 . 

h, S.W. , Harris, J.A. , Ng, L. , Winslow, B. , Cain, N. , Mihalas, S. , Wang, Q. , Lau, C. , Kuan, L. ,

Henry, A.M. , et al. , 2014. A mesoscale connectome of the mouse brain. Nature 508

(7495), 207–214 . 

alla, G. , Derényi, I. , Farkas, I. , Vicsek, T. , 2005. Uncovering the overlapping community

structure of complex networks in nature and society. Nature 435 (7043), 814–818 . 

ark, H.-J. , Friston, K. , 2013. Structural and functional brain networks: from connections

to cognition. Science 342 (6158) . 

avlovic, D.M. , Vértes, P.E. , Bullmore, E.T. , Schafer, W.R. , Nichols, T.E. , 2014. Stochastic

blockmodeling of the modules and core of the caenorhabditis elegans connectome.

PLoS ONE 9 (7), e97584 . 

eel, L. , Larremore, D.B. , Clauset, A. , 2017. The ground truth about metadata and com-

munity detection in networks. Sci. Adv. 3 (5), e1602548 . 

eixoto, T.P. , 2012. Entropy of stochastic blockmodel ensembles. Phys. Rev. E 85 (5),

056122 . 

eixoto, T.P. , 2014. Hierarchical block structures and high-resolution model selection in

large networks. Phys. Rev. X 4 (1), 011047 . 

ons, P. , Latapy, M. , 2006. Computing communities in large networks using random walks.

J. Graph Algorithms Appl. Citeseer . 

uxeddu, M.G. , Petti, M. , Astolfi, L. , 2021. A comprehensive analysis of multilayer com-

munity detection algorithms for application to eeg-based brain networks. Front. Syst.

Neurosci. 15 . 

ower, J.D. , Cohen, A.L. , Nelson, S.M. , Wig, G.S. , Barnes, K.A. , Church, J.A. , Vogel, A.C. ,

Laumann, T.O. , Miezin, F.M. , Schlaggar, B.L. , et al. , 2011. Functional network orga-

nization of the human brain. Neuron 72 (4), 665–678 . 

uxeddu, M.G. , Faskowitz, J. , Betzel, R.F. , Petti, M. , Astolfi, L. , Sporns, O. , 2020. The

modular organization of brain cortical connectivity across the human lifespan. Neu-

roImage 218, 116974 . 

http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0055
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0067
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0068
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0069
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0070
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0071
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0071
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0072
http://netwiki.amath.unc.edu/GenLouvain
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0073
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0073
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0073
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0073
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0075
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0075
http://arxiv.org/abs/0812.1770
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0076
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0078
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0078
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0078
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0079
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0079
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0079
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0080
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0080
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0080
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0080
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0080
http://arxiv.org/abs/1311.1924
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0081
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0083
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0084
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0084
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0084
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0084
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0085
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0086
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0086
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0086
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0086
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0086
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0086
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0086
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0087
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0087
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0087
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0087
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0087
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0087
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0088
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0088
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0089
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0089
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0089
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0090
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0091
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0091
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0091
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0091
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0091
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0092
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0092
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0092
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0093
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0093
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0093
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0093
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0093
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0093
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0094
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0094
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0094
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0094
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0095
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0095
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0096
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0096
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0097
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0097
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0097
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0101
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0101
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0101
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0101
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0098
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0100
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0100
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0100
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0100
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0100
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0100
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0100


F. Zamani Esfahlani, Y. Jo, M.G. Puxeddu et al. NeuroImage 244 (2021) 118607 

P  

 

 

R  

R  

 

R  

R  

R  

S  

 

S  

 

S  

 

S  

 

S  

 

S  

 

 

S  

S  

S  

S  

S  

T  

 

T  

T

V

V  

V  

 

V  

 

W  

 

W  

Y  

 

 

Y  

 

 

Y  

 

uxeddu, M. G. , Petti, M. , Mattia, D. , Astolfi, L. , 2019. The optimal setting for multilayer

modularity optimization in multilayer brain networks. In: 2019 41st Annual Interna-

tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

IEEE, pp. 624–627 . 

eichardt, J. , Bornholdt, S. , 2006. Statistical mechanics of community detection. Phys.

Rev. E 74 (1), 016110 . 

oberts, J.A. , Perry, A. , Lord, A.R. , Roberts, G. , Mitchell, P.B. , Smith, R.E. , Calamante, F. ,

Breakspear, M. , 2016. The contribution of geometry to the human connectome. Neu-

roImage 124, 379–393 . 

osvall, M. , Bergstrom, C.T. , 2008. Maps of random walks on complex networks reveal

community structure. Proc. Natl. Acad. Sci. 105 (4), 1118–1123 . 

ubinov, M. , Sporns, O. , 2010. Complex network measures of brain connectivity: uses and

interpretations. NeuroImage 52 (3), 1059–1069 . 

ubinov, M. , Sporns, O. , 2011. Weight-conserving characterization of complex functional

brain networks. NeuroImage 56 (4), 2068–2079 . 

anchez-Rodriguez, L.M. , Iturria-Medina, Y. , Mouches, P. , Sotero, R.C. , 2021. Detecting

brain network communities: considering the role of information flow and its different

temporal scales. NeuroImage 225, 117431 . 

arwar, T. , Ramamohanarao, K. , Zalesky, A. , 2019. Detecting brain network communi-

ties: considering the role of information flow and its different temporal scales. Magn.

Reson. Med. 81 (2), 1368–1384 . 

chaefer, A. , Kong, R. , Gordon, E.M. , Laumann, T.O. , Zuo, X.-N. , Holmes, A.J. , Eick-

hoff, S.B. , Yeo, B.T. , 2018. Local-global parcellation of the human cerebral cortex

from intrinsic functional connectivity mri. Cereb. Cortex 28 (9), 3095–3114 . 

chaub, M.T. , Delvenne, J.-C. , Yaliraki, S.N. , Barahona, M. , 2012. Markov dynamics as a

zooming lens for multiscale community detection: non clique-like communities and

the field-of-view limit. PLoS ONE 7 (2), e32210 . 

hinn, M. , Hu, A. , Turner, L. , Noble, S. , Achard, S. , Anticevic, A. , Scheinost, D. , Consta-

ble, R.T. , Lee, D. , Bullmore, E.T. , et al. , 2021. Spatial and temporal autocorrelation

weave human brain networks. bioRxiv . 

mith, S.M. , Fox, P.T. , Miller, K.L. , Glahn, D.C. , Fox, P.M. , Mackay, C.E. , Filippini, N. ,

Watkins, K.E. , Toro, R. , Laird, A.R. , et al. , 2009. Correspondence of the brain’s

functional architecture during activation and rest. Proc. Natl. Acad. Sci. 106 (31),

13040–13045 . 

onkusare, S. , Breakspear, M. , Guo, C. , 2019. Naturalistic stimuli in neuroscience: criti-

cally acclaimed. Trends Cogn. Sci. 23 (8), 699–714 . 

porns, O. , Betzel, R.F. , 2016. Modular brain networks. Annu. Rev. Psychol. 67, 613–640 .

porns, O. , Tononi, G. , Kötter, R. , 2005. The human connectome: a structural description

of the human brain. PLoS Comput. Biol. 1 (4), e42 . 
15 
porns, O. , Zwi, J.D. , 2004. The small world of the cerebral cortex. Neuroinformatics 2

(2), 145–162 . 

tiso, J. , Bassett, D.S. , 2018. Spatial embedding imposes constraints on neuronal network

architectures. Trends Cogn. Sci. 22 (12), 1127–1142 . 

elesford, Q.K. , Lynall, M.-E. , Vettel, J. , Miller, M.B. , Grafton, S.T. , Bassett, D.S. , 2016.

Detection of functional brain network reconfiguration during task-driven cognitive

states. NeuroImage 142, 198–210 . 

raag, V.A. , Van Dooren, P. , Nesterov, Y. , 2011. Narrow scope for resolution-limit-free

community detection. Phys. Rev. E 84 (1), 016114 . 

raag, V.A. , Waltman, L. , Van Eck, N.J. , 2019. From louvain to leiden: guaranteeing well–

connected communities. Sci. Rep. 9 (1), 1–12 . 

aiana, M. , Muldoon, S.F. , 2018. Multilayer brain networks. J. Nonlinear Sci. 1–23 . 

an Den Heuvel, M.P. , Sporns, O. , 2011. Rich-club organization of the human connectome.

J. Neurosci. 31 (44), 15775–15786 . 

an Essen, D.C. , Smith, S.M. , Barch, D.M. , Behrens, T.E. , Yacoub, E. , Ugurbil, K. , Wu-Minn

HCP Consortium , et al. , 2013. The wu-minn human connectome project: an overview.

NeuroImage 80, 62–79 . 

értes, P.E. , Alexander-Bloch, A.F. , Gogtay, N. , Giedd, J.N. , Rapoport, J.L. , Bullmore, E.T. ,

2012. Simple models of human brain functional networks. Proc. Natl. Acad. Sci. 109

(15), 5868–5873 . 

hite, J.G. , Southgate, E. , Thomson, J.N. , Brenner, S. , 1986. The structure of the nervous

system of the nematode caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol.

Sci. 314 (1165), 1–340 . 

ig, G.S. , 2017. Segregated systems of human brain networks. Trends Cogn. Sci. 21 (12),

981–996 . 

ang, Z. , Telesford, Q.K. , Franco, A.R. , Lim, R. , Gu, S. , Xu, T. , Ai, L. , Castellanos, F.X. ,

Yan, C.-G. , Colcombe, S. , et al. , 2021. Measurement reliability for individual differ-

ences in multilayer network dynamics: Cautions and considerations. NeuroImage 225,

117489 . 

eo, B.T. , Krienen, F.M. , Sepulcre, J. , Sabuncu, M.R. , Lashkari, D. , Hollinshead, M. , Roff-

man, J.L. , Smoller, J.W. , Zöllei, L. , Polimeni, J.R. , et al. , 2011. The organization of

the human cerebral cortex estimated by intrinsic functional connectivity. J. Neuro-

physiol. . 

in, W. , Li, T. , Hung, S.-C. , Zhang, H. , Wang, L. , Shen, D. , Zhu, H. , Mucha, P.J. , Cohen, J.R. ,

Lin, W. , 2020. The emergence of a functionally flexible brain during early infancy.

Proc. Natl. Acad. Sci. 117 (38), 23904–23913 . 

http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0099
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0099
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0099
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0099
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0099
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0102
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0102
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0102
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0103
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0103
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0103
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0103
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0103
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0103
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0103
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0103
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0103
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0104
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0104
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0104
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0105
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0105
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0105
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0106
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0106
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0106
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0107
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0107
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0107
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0107
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0107
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0108
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0108
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0108
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0108
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0109
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0109
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0109
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0109
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0109
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0109
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0109
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0109
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0109
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0110
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0110
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0110
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0110
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0110
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0111
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0112
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0113
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0113
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0113
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0113
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0114
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0114
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0114
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0115
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0115
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0115
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0115
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0116
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0116
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0116
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0117
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0117
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0117
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0118
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0118
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0118
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0118
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0118
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0118
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0118
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0119
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0119
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0119
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0119
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0120
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0120
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0120
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0120
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0121
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0121
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0121
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0122
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0122
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0122
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0123
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0123
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0123
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0123
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0123
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0123
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0123
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0123
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0123
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0124
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0124
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0124
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0124
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0124
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0124
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0124
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0125
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0125
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0125
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0125
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0125
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0126
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0126
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0127
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0128
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129
http://refhub.elsevier.com/S1053-8119(21)00880-6/sbref0129

	Modularity maximization as a flexible and generic framework for brain network exploratory analysis
	1 Introduction
	2 Modularity maximization
	2.1 Network construction
	2.1.1 Structural connectivity
	2.1.2 Functional connectivity

	2.2 Community structure of human brain networks
	2.3 The modularity or “Q” heuristic
	2.4 Best practices
	2.4.1 Near-degeneracy of the modularity landscape
	2.4.2 Resolution limits and multi-scale extensions

	2.5 Modifying modularity

	3 Single-layer modularity maximization
	3.1 Null models for brain networks
	3.1.1 Configuration models
	3.1.2 Incorporating spatial relationships
	3.1.3 Null models for signed matrices

	3.2 Condition and group differences
	3.2.1 Comparing FC across tasks
	3.2.2 Comparing connectivity between groups


	4 Multi-layer modularity maximization
	4.1 Applications to time-varying connectivity
	4.2 Applications to multi-subject, multi-task, and dense sampling datasets
	4.3 Multi-layer community detection for multi-modal datasets

	5 Outlook and concluding remarks
	5.1 Software

	Acknowledgment
	References


