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Key points

• Introducing the connectome: how we can model the brain as a network of interconnected brain regions.
• Describing organizational principles of the connectome by characterizing its topology in terms of functional specialization,

modularity, and communication efficiency.
• Discussing the insight that the connectome topology can offer about brain function.

Abstract

Brain connectivity can be represented as a complex network, amenable to modeling and analysis using the tools of network
science and graph theory. In this article we survey three approaches to characterize the topology of structural connectivity. We
discuss families of graphmetrics related to (i) specialized roles for individual network nodes (topological specialization), (ii)
their clustering into modules, (iii) and models capturing network communication. We also clarify how these different
network constructs relate to each other and inform brain function. In doing so, we discuss the insights that they can offer
about brain functional connectivity and organization. Together with this article, we provide sample data and a set of analysis
scripts as a starting point for practitioners in the field.

Introduction

The brain is a complex network, composed of billions of neurons organized into hundreds of cell types and regions whose dynamic
activity underpins cognition and behavior (Sporns et al., 2005). The anatomical organization of brain networks develops and
evolves into distinct architectures that define relations among neural elements across multiple scales. These relations enable func-
tional specialization (Passingham et al., 2002), modular architecture (Sporns and Betzel, 2016), and communication processes
(Seguin et al., 2023a) that unfold in time, in the course of spontaneous, stimulus-evoked and task-specific neural activations.

Network approaches have become integral components of data science, driven in part by the ubiquity and universality of
networks in technology and engineering, as well as social and biological systems. Network science provides a theoretical foundation
as well as well-defined analytic and modeling tools that enable the investigation of complex networked systems. The brain is a case
in point (Bassett and Sporns, 2017). Over the last couple of decades an increasing number of studies have leveraged network science
theories and tools to map the brain’s structural and functional networks.

The distinction between structural and functional connectivity networks, here abbreviated as SC and FC, is fundamental, and
somewhat unique to the brain (Bullmore and Sporns, 2009). While SC refers to anatomical connections between neural elements,
FC measures statistical relationships between activity recorded from different locations in the brain. These two main domains of
brain networks are mutually dependent. The structural architecture shapes neural activity and consequently functional connectivity.
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On the other side, functional connectivity also influences the structural backbone over longer periods of time, through mechanisms
of neural plasticity and even on evolutionary time scales.

In this article we survey three sets of network neuroscience methods. First, we examine the structural basis of functional special-
ization. Second, we cover the extensive area of network modules and communities. Third, we review a set of tools that attempt to
predict and capture communication processes. We then assemble these approaches and ask if they can be useful to predict func-
tional connectivity. Finally, we discuss how these methods provide convergent and complementary insights into brain organization.

To illustrate the concepts discussed throughout the article, we perform simple analyses on a sample data set, obtained from the
Human Connectome Project (HCP) (Van Essen et al., 2013). Both the code to reproduce the analyses and sample data are available
on the following GitHub repository (https://github.com/mariagraziaP/chapter_DataNeuroscience).

Basic definitions

While network terminology has become widespread in neuroscience (Bassett and Sporns, 2017), it is useful to define some core
terms at the outset. With the term network, we refer to a mathematical object used to model and analyze many complex systems,
among which is the brain. The fundamental units of the system (neural elements in the case of the brain) and their mutual relations
are formalized through networks as a set of nodes and edges (or links). Mathematically, we can summarize a network in the form of
a square matrix A, called the adjacency matrix, of dimensions N#N, with N being the number of nodes. A non-zero entry Aij in the
adjacency matrix denotes the existence of a connection between nodes i and j, and its value encodes the weight of that connection.

Once brain connectivity data have been organized in the form of a network, its topology, i.e. the relations between nodes and
edges, can be investigated through a set of tools developed in the fields of graph theory and network science (Fornito et al., 2016).
Of particular interest are the measures of segregation and integration, which document different aspects of the network’s organiza-
tion. A first peculiarity of brain network organization is that the distribution of the edges is far from uniform. Rather, they tend to
cluster, forming highly interconnected groups of nodes (Sporns and Betzel, 2016). Segregation measures then describe the tendency
of nodes to aggregate into modules (also named communities or clusters). Measures of integration, instead, are usually applied to
capture how nodes are linked to each other through sequences of edges, also termed paths. These measures are important to describe
how communication may occur in the network and how information is exchanged between nodes. A schematic of these measures is
shown in Fig. 1.

Networks can be used to model structural and functional relationships between brain areas. Since the network interpretation
changes with the modality, it is important to clarify the difference between the two. Structural connectivity (SC) refers to the anatom-
ical (physical) connections linking distributed neural elements. Functional connectivity (FC) instead, encodes the statistical depen-
dencies between the activity recorded from pairs of neural elements. The difference between the two types of connectivity is
reflected in the topology of their networks and adjacency matrices. Structural brain networks are usually sparse. Because there is
a metabolic cost associated with each anatomical connection, most pairs of brain regions are not directly connected and thus their
interregional coupling is constrained (Betzel and Bassett, 2018). Between brain regions, structural connections are thought to be
stable over short time periods, whereas some changes in density or efficacy have been observed across developmental phases

Fig. 1 Schematic representation of a brain network and its topological properties. (A) Nodes and edges represent different brain regions and their
interconnections, respectively. (B) Brain networks can be partitioned into modules. In the example shown, the nodes are grouped into three modules
identified by different colors. (C) Paths are sequences of edges that connect pairs of nodes in the network. In the illustration, the shortest path
connecting node i to node j requires 4 edges. (D) Example of structural and functional connectivity matrices obtained from the HCP dataset. The SC
matrix is sparse and made of only positive weights, while the FC matrix is fully connected and its entries can be either positive (red) or negative
(blue).
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and aging (Betzel et al., 2014; Puxeddu et al., 2020). On the other hand, functional networks are mathematical (statistical)
constructs, so there are no direct physical or metabolic constraints limiting their density or interregional connectivity. Moreover,
mounting evidence indicates that they exhibit significant fluctuations over short timescales, adapting to spontaneous and task-
evoked neuronal activity (Cole et al., 2014; Gonzalez-Castillo and Bandettini, 2018).

To build brain networks, either structural or functional, there are multiple choices we can make to define nodes and edges,
mainly related to the spatial and temporal resolution at which we observe the interactions between neural elements (Sejnowski
et al., 2014). At a microscale level, structural networks can be reconstructed using electron microscopy, and the set of nodes and
edges would be constituted by single neurons and their synaptic contacts and axonal projections (Schrö et al., 2017; Betzel
et al., 2023; Winding et al., 2023). At mesoscale and macroscale levels instead, methods like tract-tracing or diffusion imaging
have been used to build anatomical networks where the connectivity between neural populations or larger brain areas is investi-
gated. Functional networks reflect neuroimaging modality and are usually estimated from fMRI, MEG, EEG, iEEG, or calcium
imaging signals (Friston, 2011). Here nodes are gray matter regions and functional edge weights can be statistically determined
from the signals originating from those regions in multiple ways, including zero-lag correlation, mutual information, coherence,
or other bivariate metrics.

In this article we focus on MRI-derived brain networks, which are among the most widely used in network neuroscience. SC
networks can be reconstructed from diffusion MRI and white-matter tractography (Zhang et al., 2022). Starting from a parcellation
of the brain into large-scale areas (Eickhoff et al., 2018), which defines the nodes in the SC network, tractography algorithms esti-
mate the putative trajectories and magnitudes of white matter tracts connecting these areas from diffusion MRI. Edge weights can be
estimated in a variety of ways, commonly calculated as proportional to the number or density of tractography streamlines between
two areas. Diffusion MRI cannot provide information on axonal directionality. Thus, structural connectivity will be formalized as
a weighted, positive, sparse, and undirected network. Analogous parcellations of the brain into large-scale areas are used to identify
the nodes of FC networks. Functional edges however are computed by determining statistical relationships between fMRI BOLD
time-series recorded from those large-scale areas. Commonly, the Pearson correlation is used to infer such associations. As a result,
fMRI-based FC networks are fully connected, undirected, and weighted matrices, with weights spanning the range [�1, 1] (the same
range as Pearson’s correlation coefficients). An example of MRI-derived SC and FC networks is shown in Fig. 1.

Topological specialization

One of the most fundamental observations about neuronal and regional activity in the brain is that different neurons and regions
are functionally specialized or segregated (Fornito et al., 2016). Functional specialization does not generally imply completely
encapsulated function (as in phrenology) or extreme localization (one brain region, one cognitive task). Instead, it occupies
a middle ground between localized and distributed function, with neural elements acquiring overlapping competencies that are
enabled by network connectivity. In a seminal article, Passingham et al. linked anatomical inputs and outputs to physiological
profiles of specialization (Passingham et al., 2002). Their concept of connectional fingerprint became one of the principal under-
pinnings of attempts to link brain structure to function.

In network terms, a fingerprint represents a row or column in an adjacency matrix. This simple construct encodes a node’s
connectivity profile and can be understood as the set of all inputs and outputs of a given neural element. The overlap between
the topological fingerprint of two nodes is thought to reflect the similarity of their roles in processing information. Presumably,
functional co-activation of two brain regions in part originates from their common structural connectivity pattern. The implication
is that two neural elements with the exact same set of inputs and outputs are specialized to perform identical functional roles in the
network. The greater the difference in fingerprints, the more distinct are their functional contributions.

A number of topological specialization measures have been proposed to quantify pairwise similarities in nodal fingerprints.
Computed for all pairs of nodes, these measures yield an analytical transformation of the structural connectivity matrix
thatdbeyond direct structural connectionsdalso encode information on the topological similarity of unconnected nodes
(Fig. 2). Here, we focus on the matching index and the cosine similarity, two widely used metrics that find utility in a range of
network neuroscience applications, including the quantification of node homophily in generative models of brain networks (Betzel
et al., 2016; Oldham et al., 2022) and the embedding of connectomics data into low-dimensional functional spaces (Rosenthal
et al., 2018).

The matching index (Hilgetag et al., 2002) between nodes i and j is defined as

MIij ¼

���GiyjXGj=i

������GiyjWGj=i

���
;

where Giyj is the set of i’s neighbors excluding j. Put simply, it is the number of common neighbors between i and j divided by
their total number of neighbors, with a potential connection between i and j not taken into account in the calculation. As such,
MIij ˛ ½0;1�, with a value of 0 indicating that i and j do not share any neighbors and a value of 1 indicating a perfect overlap in their
connectivity profiles. We note that this formulation of the matching index is closely related to the Jaccard similarity, and that
alternative versions of this measure have been proposed to explicitly take into account connection weights.
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The cosine similarity between i and j is given by

CSij ¼
Ai$Aj��Aik�kAj

��;

where Ai is the i th row (or column) in the adjacency matrix. Here, the connectivity profiles of i and j are viewed as two vectors in
N-dimensional space, and their similarity is computed as the cosine of the angle between them. In the formulation above, this is
expressed as the dot product of the two vectors, divided by the product of their lengths. It follows that CSij ˛ ½�1;1�, with similarity
values of �1, 0, and 1 denoting exactly opposite, orthogonal and proportional pairs of vectors, respectively.

Modularity

A major application of network science to the brain involves the data-driven discovery of network modules, also commonly called
communities. The term module does not imply, as it does in some areas of cognitive science, complete separation or encapsulation
of neural activity and behavioral competencies. Far from a Fodorian, cognitively encapsulated, view of modularity (Fodor, 1983),
network modules are mathematically defined objects, corresponding to groups of nodes topologically close to each other (we will
see different definitions of closeness later in this section) that can share connections and functions with other groups (Sporns,
2013). Evidence of network modularity has been observed in numerous neural systems, from model organisms, such as the Caeno-
rhabditis elegans (Towlson et al., 2013) and the Drosophila melanogaster (Betzel et al., 2023), to mammals (Puxeddu et al., 2024) and
humans (Hagmann et al., 2008). Intuitively, network modularity allows for balanced states of segregated and integrated informa-
tion processing that support cognitive functioning. This definition of communities harmonizes with what Simon proposed as “near-
decomposability” (Simon, 1962), a ubiquitous property of complex systems that confers a great advantage in terms of adaptability
to evolutionary pressure, lifespan modifications, or focal dysfunction or damage.

Community detection is methodologically related to data clustering and segmentation, core topics of data science. Clustering is
used to reduce the dimensionality of large systems or generate insights into the system’s organization. In large and complex data, the
detection of communities is notoriously hard and computationally demanding. While the majority of brain network data sets are
modest in size (comprising hundreds to thousands of nodes), they do pose challenges mainly due to their spatio-temporal multi-
scale organization (Betzel and Bassett, 2017). Not only do communities exist at multiple spatial scales, showing different levels of
granularity, they also reconfigure at several temporal scales, frommilliseconds during rapid reconfiguration (Puxeddu et al., 2021a),
to learning (Bassett et al., 2011) and plasticity (Gallen and D’Esposito, 2019), and over development and the lifespan (Puxeddu
et al., 2020). While we leave aside issues of network dynamics (time-changing edges and communities), often addressed through
multi-layer modeling (Vaiana and Muldoon, 2020; Puxeddu et al., 2021b; Bassett et al., 2013), we will focus on the topic of spatial
resolution of the communities. This is a central issue in network neuroscience that must be addressed in most neuroimaging data-
sets, as the topology of brain networks accommodates sets of modules that span multiple spatial scales and may be hierarchically
nested (Ashourvan et al., 2019; Meunier et al., 2009).

Fig. 2 Topological specialization analysis. (A) Toy model. Topological specialization is computed between pairs of nodes by observing their
connectivity profiles. A key factor in determining topological similarity is the proportion of neighbors shared between two nodes, such that large (left)
and small (right) overlap in connectivity fingerprints indicate distinct profiles of topological specialization. (B) Example of connectivity patterns of
three nodes fi; j; kg of the SC matrix. Nodes i and j present a similar connectivity pattern and therefore the Matching Index (MI) computed between
their rows is high (MIij ¼ 0:7). On the contrary, nodes j and k have highly diverse profiles of connectivity, causing a lower topological similarity
(MIjk ¼ 0:03). (C) Cosine similarity and matching index matrices computed from structural connectivity (cf. Fig. 1). Matlab code to compute such
metrics can be found in the GitHub repository (https://github.com/mariagraziaP/chapter_DataNeuroscience).
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There are dozens of definitions of modules and communities and numerous algorithms for detecting communities in network
data (Fortunato, 2010). Typically, how nodes are grouped into modules depends on the research question. Communities can corre-
spond to sets of neural elements that share dense mutual connectivity (assortative modules), similar connection patterns with the
rest of the network (block modeling), or similar response profiles or time courses (as in functional connectivity). Frequently used
methods for data-driven community detection in structural brain networks include spectral clustering, random walk models (Ros-
vall and Bergstrom, 2008), and stochastic block models (Peixoto, 2014). It is beyond the scope of this article to comprehensively
illustrate and compare all the different approaches. Instead, we focus on one of the most commonly used and versatile, the modu-
larity optimization (Newman and Girvan, 2004). Modularity optimization provides a partition of the network into modules whose
connection density is maximally greater than the connection density that one would observe within the same modules imposed on
a null connectivity model. Mathematically, these partitions are obtained by maximizing a quality metric, Q, called modularity, that
in its original formulation is expressed as:

Q¼
X
ij

�
Aij � Pij

�
d
�
si; sj

�
:

Here, Aij and Pij are the weights of the connection between nodes i and j in the observed network and the null model, respec-
tively, si ˛ ½1; :::;K� indicates to which of the K communities nodes i and j belong, and d is the Kronecker delta function, equal to 1
when the arguments assume the same value (nodes and are assigned to the same community) and 0 otherwise. By optimizingQ, we
maximize the difference between A and P for co-assigned nodes, which leads to assortative communities whose internal density
exceeds a null-case expectation.

But how do we build a null model for modularity optimization? An unequivocal answer to this question does not exist. Indeed,
the many available choices of a null model make the approach versatile and able to address specific questions in neuroscience
(Zamani Esfahlani et al., 2021). For instance, structural and functional networks present different topology and originate in
different types of brain data, and thus we would assume they require different null models. Among the most appropriate for struc-
tural brain networks, there is the configuration null model, which assumes that the expected weight between two nodes Pij is linked to

their strength, ki and kj, through the expression Pij ¼ kikj
2m, where 2m is the sum of the weights in the network. With this formulation,

we build a null connectivity network model that preserves the degree sequence while randomizing the edges. More sophisticated
null models also attempt to preserve spatial relationships. In fact, with the unrestrained randomization of the configuration model
we generate null networks with links connecting nodes many times more distant and with a cost that far exceeds what is observed in
anatomical networks. One way to preserve spatial relationships is using the binary structure of A as a mask and randomly assign
weights to the edges (Roberts et al., 2016). The configuration model, as well as its modifications, are tailored for sparse positive
networks, such as those in SC, but less suited for fully connected matrices with positive and negative weights like FC networks.
In this second case, every node has an identical degree and edges are not independent (which is a necessary condition for the
just described null model). A more appropriate null model for correlation networks then is the uniform null model, where every
pair of nodes is connected with the same weight (Bazzi et al., 2016).

There are several optimization algorithms to maximize modularity, among which one of the most widely used is the so-called
Louvain algorithm (Blondel et al., 2008). A computational issue is that the use of a global quality function requires the algorithm to
identify the single partition that performs best. However, such a single solution does not exist. Instead, many near-optimal parti-
tions of the same network will likely provide high and near-optimal Q-values. This issue is called near-degeneracy of modularity
(Good et al., 2010) and is more andmore evident as the size of the network increases. It is best practice then, to run the optimization
algorithmmany times, avoiding treating the first obtained partition as privileged. But how do we deal with the resulting set of parti-
tions? While there exist many approaches, for instance selecting the most frequent partition or the partition most similar to all the
others (a sort of centroid), Lancichinetti and Fortunato provided a method to identify a consensus partition out of an ensemble (Lan-
cichinetti and Fortunato, 2012). The consensus is obtained by running the optimization algorithm on an agreement matrix, whose
entries represent the frequency with which any two nodes have been assigned to the same module within the set of partitions. We
can iterate the procedure by running many times the algorithm on such a matrix, obtaining a new set of partitions that can be co-
classified again. It has been shown how a stable partition of the network is soon reached, after a few iterations.

Another issue in the optimization is that the Q-metric is biased and requires modification to detect modules at smaller or larger
spatial scales (Fortunato and Barthélemy, 2007). For this reason, a more recent formulation includes a spatial resolution parameter
g that scales the importance of the null model P:

QðgÞ¼
X
i;j

h
Aij � gPij

i
d
�
si;sj

�
:

Low g-values make it easier for the observed model to beat the null case so that more pairs of nodes would be likely assigned
together forming big communities. As the g-value increases, it becomes harder for two nodes to have an edge weight Aij greater than
gPij, making it unlikely for them to be assigned to the same modules. Thus, the number of detected modules is determined by the
value of g. Low-g render coarse partitions made of few big clusters, while high-g return fine partitions, made of many small commu-
nities. In this sense, the resolution parameter g allows for a topological zoom-in and zoom-out of the meso-scale structures of the
network. In Fig. 3A we report an example of SC partitions obtained at different settings of g.
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While in many studies, the community structure of brain networks is investigated by imposing the default setting of g ¼ 1, it
should be noticed that this represents only a specific scale of the network organization, that will generally not be privileged with
respect to many, equally plausible, other partitions. Instead, the current best practice of community detection in brain networks
suggests running the optimization systematically varying g over a range of values that allow for a multiscale investigation of the
modular structure.

Consensus and multiscale approaches can be combined by performing multiresolution consensus clustering (MRCC) (Jeub et al.,
2018). This leads to a thorough analysis of the modular structure in brain networks, where both near-degeneracy and multiscale
issues are addressed. The MRCC works by sweeping over a range of g that gives good coverage of different scales. It then combines
all the resulting partitions into an agreement matrix, also called co-classification matrix (CC) (Fig. 3B) of dimension N�N, whose
entries denote the frequency with which any pair of nodes is assigned to the samemodule across the g spectrum. The CC can then be
analyzed to study modularity in a g-resolved way, without the need to settle for a specific resolution, or can be clustered again to
find a consensus. In Jeub et al. (2018) the CC is clustered using a particular null model based on the ensemble of partitions, which
allows for a statistical assessment of the significance of the co-classification. Hierarchical structures are then obtained by recursively
iterating the procedure to modules obtained at the previous step, stopping when they do not split into any significant sub-modules.
In the end, MRCC returns a set of hierarchical partitions that underlie the organization of the network at different spatial scales. The
hierarchical aspect is of particular interest as it mirrors our understanding of the brain’s modular organization, where brain areas are
recursively aggregated in an attempt to balance information segregation within similar processing units at a single scale and inte-
gration between groups of units across multiple scales (Park and Friston, 2013).

Communication

Network communication processes are ubiquitous in nature. From the spread of infectious diseases in social networks, to failure
cascades in power grids, to the routing of packages on the internet, the structure of complex networks shapes the flow of information
between elements of a system (Estrada, 2011; Newman, 2003). In nervous systems, structural connectivity between neural elements
enables exchange of neural signals, in the form of series of action potentials. The resulting signal traffic can be modeled as a commu-
nication process (Seguin et al., 2023a; Avena-Koenigsberger et al., 2018), exhibiting its own dynamics expressed as fluctuations in
information flow. At the macroscale of the human connectome inferred fromMRI, communication via white matter fibers facilitates
interactions between gray matter regions, which in turn result in whole-brain patterns of functional connectivity.

Fig. 3 Example of multi-resolution community detection. (A) Running the modularity optimization with different g-values leads to differently
resolved partitions of the brain network into modules of highly interconnected nodes. In the example, we show the SC matrix reordered according to
the community affiliations resulting from three different g. With this reordering the number of modules is given by the number of diagonal blocks
and within-modules connections fall inside those blocks, highlighting an assortative modular organization. The three g-values lead to partitions made
of 2, 7 and 14 modules respectively. (B) Agreement (or co-classification) matrix computed on an ensemble of 1000 partitions obtained by sweeping
g over the range [0.001 10], with the number of modules ranging between 2 and 50. Nodes are reordered based on the consensus partitions
computed on this matrix, which is made of 7 modules [M1, . , M7]. The Matlab code to compute MRCC and agreement matrix is available in the
GitHub repository (https://github.com/mariagraziaP/chapter_DataNeuroscience). (C) Projection of the consensus partition onto the cortical surface.
The allegiance of a node to one of the 7 communities is rendered through a color-code.
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Measures from graph theory and network science can be used tomodel communication in brain networks. Suchmodels are most
relevant for understanding functional interactions between anatomically unconnected neural elements, i.e., pairs of nodes for which
communication is established via a sequence of one or more intermediate elements (Fig. 4A). Computed on structural connectivity,
a network communication measure yields a communication matrix, which quantifies the difficulty (or ease, depending on the
measure) of signal transmission between every pair of nodes. To achieve this, each measure assumes that communication takes
place according to a certain policy to guide signal transmission through the network.

Traditionally, information flow in brain networks has been modeled via shortest topological paths (Fig. 4B, left). As such,
communication between two nodes is considered to take place via the least costly path between them (e.g., via the fewest number
of edges in an unweighted network). Many popular graph-theoretical measures used to describe brain networks are based on this
conceptualization of neural communication, including the characteristic path length, network efficiency, betweenness centrality,
and measures of small-world topology (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Ultimately, all of these measures
stem from the matrix of shortest path lengths. The first step in the computation of shortest paths is the monotonic transformation of
strong connection weights into short connection lengths. This is necessary since the identification of shortest paths is a minimization
problem, therefore requiring a measure of the cost associated with traversing each connection in the network. Connection lengths
are typically computed as L ¼ 1=A or, assuming weights are defined between 0 and 1, L ¼ �logðAÞ. The shortest path length between
nodes i and j is then computed as

SPLij ¼ Liu þ :::þ Lvj;

where fi; u; :::; v; jg is the sequence of nodes visited along their shortest path.
In recent years, the assumption of neural communication via shortest paths has been increasingly called into question, owing to

two notable shortcomings of this model. First, it presupposes that individual network elements have global knowledge of network
topology, as the identification of shortest paths mandates information about the entire network. This requirement for a centralized,
bird’s-eye view of connectivity is unlikely to be met in nervous systems, where individual neural elements most likely do not possess
knowledge of the network beyond their immediate vicinity (Goñ et al., 2013). Second, the heterogeneous distribution of edge
weights characteristic of brain networks means that shortest paths traverse only a small fraction of all the edges in the connecto-
medthe implication being that, if neural signals were transmitted exclusively via shortest paths, most white matter projections in
the human brain would be inconsequential for inter-areal communication (Avena-Koenigsberger et al., 2017; Seguin et al., 2018).

In light of these drawbacks, multiple alternative measures have been recently proposed as candidate descriptors of connectome
communication. In particular, attention has started to swift towards decentralized models that utilize local properties of network

Fig. 4 Communication processes in brain networks. (A) A network communication measure quantifies the difficulty (or ease) of transmission
between pairs of nodes, under the assumption that signals are transmitted according to a certain policy to guide network communication. Computed
for every pair of nodes, the structural connectivity matrix (encoding only direct structural edges) is transformed into a communication matrix. (B)
Examples of communication matrices obtained from different policies and conceptualizations of network communication, arranged on a spectrum
from routing (efficient, selectively assessed paths) to diffusion (random walk dynamics). The Matlab code to compute such communication matrices
can be found in the GitHub repository (https://github.com/mariagraziaP/chapter_DataNeuroscience).
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topology to propagate signals, and may therefore provide more biologically plausible accounts of neural information flow (Seguin
et al., 2023a; Avena-Koenigsberger et al., 2018). A quintessential measure of decentralized communication is the mean first passage
time, which quantifies the average number of edges traversed by a random walker traveling from a source node to a target node
(Fig. 4B, right).

Well-established mathematical operations can be used to describe the dynamics of random walks on networks, and the mean
first passage time can be analytically computed from the transition probability matrix T, such that

Tij ¼
AijPN
k¼1Aik

:

Importantly, modeling signal transmission as a random walk process does not mandate global knowledge of the network, as the
behavior of the random walker is determined entirely by the out-degree of each node visited during the walkda local property that
could be conceivably accessed by elements of a nervous system (Goñ et al., 2013). However, while biologically plausible from an
implementational standpoint, randomwalks are exceedingly inefficient policies to guide communication. Compared to the shortest
path, random walks typically require orders-of-magnitude more steps through the network to establish a communication channel
between two nodes (Avena-Koenigsberger et al., 2014).

Routing along shortest pathsdefficient communication but strong knowledge assumptionsdand diffusion via random
walksdweak knowledge assumptions but inefficient communicationdconstitute opposite ends on a spectrum of signaling policies
(Avena-Koenigsberger et al., 2019). Many other communication models have been proposed that negotiate different trade-offs
between transmission efficiency and biological plausibility, and therefore occupy positions on the spectrum (Seguin et al.,
2023a). Examples include navigation (Seguin et al., 2018), linear threshold models (Mi�si�c et al., 2015), and communicability
(Estrada and Hatano, 2008). Of particular interest are measures that explicitly combine aspects of shortest paths and random walks,
such as the search information (Rosvall et al., 2005). This measure is related to the probability that a random walker will serendip-
itously travel between two nodes via their shortest path, and thus quantifies the accessibility of efficient paths to communication
policies without centralized knowledge of the network (Fig. 4B, center). Search information can therefore be used to probe the
extent to which the topology of the connectome naturally guides the flow of random walkers via efficient communication routes.
Mathematically, the search information from nodes i to j is defined as

SIij ¼ log2
�
Tiu � :::� Tvj

�
;

where fi; u; :::; v; jg is the sequence of nodes visited along their shortest path and T is the transition probability matrix introduced
above.

Accumulating evidence indicates that communication measures spanning the routingediffusion spectrum offer utility in under-
standing various aspects of brain function. Network communication models have been reported to explain inter-individual differ-
ences in clinical, cognitive and behavioral scores (Seguin et al., 2020; Imms et al., 2021; de Lange et al., 2019), established patterns
of cortical lateralization (Mi�si�c et al., 2018), the propagation of electrophysiological activity following focal brain stimulation
(Seguin et al., 2023b), and multiple aspects of spontaneous inter-regional co-activation inferred from fMRI time series (Goñi
et al., 2014; Seguin et al., 2019; Zamani Esfahlani et al., 2022). Collectively, these studies indicate that augmenting structural
connectivity matricesdencoding only direct anatomical connectionsdinto communication matricesddescribing polysynaptic
interactionsdimproves the predictive utility of the structural connectome.

Despite this progress, it is important to note that network communication models provide only putative descriptions of neural
signaling. It remains unclear which conceptualizations of network communication most accurately describe underlying biological
processes. As such, efforts to systematically compare the utility of different measures to a wide range of neuroscientific research ques-
tions are necessary. Interestingly, to date, the few comparative studies evaluating the performance of communication models have
highlighted the explanatory power of decentralized measures that deviate from the prevailing premise of routing along shortest
paths (Mi�si�c et al., 2018; Seguin et al., 2023b). Another emerging trend is the observation that model predictive utility may be
context-dependent, with different communication measures providing better descriptions of neural signaling processes pertaining
to different regions and systems, measured at different spatio-temporal scales, or related to different behavioral and cognitive
demands (Seguin et al., 2020, 2022). Recent advancements in multi-policy communication modelsdallowing for the principled
interpolation of distinct signaling strategiesdprovide a promising framework to systematically investigate the contribution of
different models in varied contexts (Betzel et al., 2022), and may therefore facilitate insights into the mechanisms governing
inter-areal connectome communication.

Links to brain function

The network metrics and constructs we introduced so far are all derived from the structural connectivity matrix. All of them deliver
estimates of (dis)similarity or (dis)affiliation for pairs of nodes in the data, regardless of whether the node pair shares a direct struc-
tural connection. This way, the common thread among topological specialization, modularity and communication measures is that
they augment the structural connectivity matrixdwhich is typically sparse, only containing information on direct anatomical con-
nectionsdinto denser matrices of putative functional associations. A number of studies have proposed to use these constructs for
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predicting features of brain dynamics (Bullmore and Sporns, 2009; Suá et al., 2020), for example the brain’s functional connectivity.
Here, the ability of the surveyed network measures to estimate functional interactions between structurally unconnected nodes is
critical, as it is well established that structurally unconnected neural elements can show robust patterns of functional connectivity
(van den Heuvel et al., 2009; O’Reilly et al., 2013).

It is important to note that there is no single representation of functional connectivity, as FC is modality and acquisition-
dependent. Among the simplest and most widely applied is the covariance matrix, which, in fMRI studies, is commonly computed
as the Pearson correlation among regional time courses. In many cases, raw correlations are processed to remove effects of unwanted
influences or biases in data acquisition, e.g. the effects of head motion and global brain-wide signal components, to yield residuals
or partial correlations. Alternative methods for computing pairwise relations among regional time courses such as full partial corre-
lations andmutual information have been proposed (Craddock et al., 2013). While there is much promise in these alternatives, they
are not yet widely applied and will be left aside, in favor of considering FC as a Pearson correlation of resting-state fMRI time
courses.

Themost common approach to evaluate structureefunction coupling is to correlate the upper-triangular entries of the functional
connectivity matrix to those of matrices derived from network measures (Fig. 5). Through this simple analysis, multiple reports have
shown that several of the metrics surveyed in this article can explain significant amounts of variance in functional connectivity
(Seguin et al., 2020; Goñi et al., 2014; Zamani Esfahlani et al., 2022). Some studies have used multivariate statistical models to
investigate how these network metrics, in addition to spatial and genetic factors, can be combined to build multifaceted prediction
tools of brain function (Betzel et al., 2019; Liu et al., 2022; Vázquez-Rodríguez et al., 2019). More recently, researchers have started
to investigate structureefunction relations at the level of individual cortical regions (Baum et al., 2020). This is achieved by sepa-
rately correlating single rows (or columns) of the functional connectivity and network measure matrices, a procedure that results in
a cortical map showing the extent to which the functional profile of each region is predicted by network measures computed on
structural connectivity (Vázquez-Rodríguez et al., 2019; Baum et al., 2020). The principal finding stemming from these studies is
that the function of sensory, unimodal regions appears more tethered to structural underpinnings than that of higher-order, multi-
modal cortical are.

Importantly, beyond purely predictive tools, these network metrics also provide an interpretable framework to investigate the
relationship between brain structure and function, which can be used to generate and evaluate hypotheses about how anatomical
connectivity is related to brain dynamics. Topological specialization measures, for example, posit that functional co-activation is
determined by shared profiles of input and output projections, such that the degree of overlap in the connectional fingerprint of
two nodes predicts their involvement in similar functional roles (Hilgetag et al., 2002). Alternatively, modularity metrics postulate
that functional connectivity and its modular organization are related to the propensity of nodes to cluster into tight-knit structural
components (Puxeddu et al., 2022). Communication measures offer yet another hypothesis, in which node pairs linked by efficient
structural paths should be more prone to synchronous activity (stronger functional connectivity) in comparison to node pairs sepa-
rated by long sequences of intermediate edges (Goñi et al., 2014).

Conclusion

Together, the three classes of measures considered in this article can be understood as providing gradually higher-level character-
izations of the relationship between structure and function, starting from local connectional fingerprints, to mesoscopic network
organization into segregated clusters, to global integration of information via network communication. As researchers continue
to explore these network measures in connectivity datasets spanning a range of species, spatiotemporal scales, and clinical contexts,
further progress in linking brain structure and function is expected to shed light on how the architecture of brain networks contrib-
utes to the rich functional dynamics observed in nervous systems.

Fig. 5 (A) Functional connectivity matrix alongside examples of matrices derived from the application of network metrics to structural connectivity,
including topological specialization (matching index), modularity (co-classification) and communication (search information) measures. (B)
Correlation between functional connectivity and network measures. Bars show the absolute value of the Spearman rank correlation coefficient
between the intra-hemispheric upper-triangular entries of the functional connectivity and network measure matrices.
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