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Embedded in neuroscience is the concept that brain functioning is underpinned by specialized
systems whose integration enables cognition and behavior. Modeling the brain as a network of
interconnected brain regions, allowed us to capitalize on network science tools and identify these
segregated systems (modules, or communities) by optimizing the weights of pairwise connections
within them. However, just knowing how strongly two brain areas are connected does not paint the
whole picture. Brain dynamics is also engendered by interactions involving more areas at the same
time, namely, higher-order interactions. In this paper, we propose a community detection algorithm
that accounts for higher-order interactions and finds modules of brain regions whose brain activity
is maximally redundant. Compared to modules identified with methods based on bivariate inter-
actions, our redundancy-dominated modules are more symmetrical between the hemispheres, they
overlap with canonical systems at the level of the sensory cortex, but describe a new organization
of the transmodal cortex. By detecting redundant modules across spatial scales, we identified a
sweet spot of maximum balance between segregation and integration of information as that scale
where redundancy within modules and synergy between modules peaked. Moreover, we defined a
local index that distinguishes brain regions in segregators and integrators based on how much they
participate in the redundancy of their modules versus the redundancy of the whole system. Finally,
we applied the algorithm to a lifespan dataset and tracked how redundant subsystems change across
time. The results of this paper serve as educated guesses on how the brain organizes itself into
modules accounting for higher-order interactions of its fundamental units, and pave the way for

further investigation that could link them to cognition, behavior, and disease.

INTRODUCTION

Emergent properties of complex systems arise from a
balance between segregation and integration of the sys-
tem’s fundamental units [I]. A prominent example of
such a system is the brain, which displays ongoing tran-
sitions between segregated and integrated activity [2H8].
On the one hand, functional specialization pushes the
brain to segregate functionally related groups of neurons,
neural populations, or brain areas. On the other hand,
the integration of these systems promotes global commu-
nication required for coherent perception and behavior.
Thus, identifying the principles able to model and re-
capitulate this interplay is a key goal of computational
cognitive neuroscience.

The balance between local segregation and global in-
tegration can be viewed through the lens of network sci-
ence. Under the network conceptualization, the brain can
be modeled as an ensemble of distributed brain regions
(nodes) linked by anatomical connections (anatomical
networks) or dynamic interactions (functional networks)
[9,[10]. Segregation in functional brain networks has been
studied primarily by observing how nodes are organized
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into modules [111, [12]. Network modules, also referred to
as communities or clusters, are groups of nodes that form
strong (or dense) connections to one another and weak
(or sparse) connections to other nodes in the network.
Strongly connected brain modules map out functional
systems that are often invoked as building blocks of cog-
nition and behavior [I3]. Complementing brain modules
are network hubs — nodes highly interconnected with the
whole network — which enable information transmission
between modules and thus functional integration [14] [I5].

The identification of modules, commonly called com-
munity detection, is usually conducted using the so-called
functional connectivity matrix—the matrix formed by
measuring covariance between pairs of neural elements.
While valid, this approach is also limited in scope. By
design, most community detection techniques search for
groupings of elements according to pairwise similarities,
without taking into account that more than two neu-
ral units can (and do) engage with each other, enabling
higher-order interactions [I6HIg|]. An increasing body of
literature centers on these higher-order interactions as
key features of complex systems, including the brain [19-
23]. This surge in interest demands new tools able to
reveal brain organizational principles by leveraging this
augmented space of possible interactions.

In the current paper, we tackle this issue by introduc-
ing a new framework to model and investigate how seg-
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regation emerges from higher-order interactions of brain
regions. We build our work exploiting recent advances
in information theory, which provides the mathematics
to describe polyadic dependencies in multivariate sys-
tems [24]. Given a set of brain regions and their activity
portrayed through time series, information theory can
help us discern two types of interactions: redundant and
synergistic [25]. While redundant information captures
how much information is copied across the elements (i.e.,
brain regions), synergistic information is the information
that is accessible only by considering the state of all the
elements as a whole [26]. We postulate that the way
the brain organizes itself into segregated subsystems can
be captured by higher-order interactions within subsets
of brain regions whose activity is maximally redundant,
jointly sharing the same information. How information
is integrated over the whole brain system can then be
estimated by quantifying the level of synergy between
elements of different subsets.

For this purpose, we developed a community detec-
tion algorithm that finds maximally redundant modules
at multiple spatial scales. We assessed how they re-
late to canonical functional systems and to the modules
identified with conventional methods that only consider
pairwise interactions. We also quantified the extent to
which the information carried by the subsets is integrated
over the entire system through synergistic interactions.
Moreover, after describing where these subsets are lo-
cated in the cortex, we also defined a new local index
of segregation and integration, based on subset inter-
actions. Finally, we applied our algorithm to a human
lifespan fMRI dataset to observe how this higher-order
redundancy-dominated modular structure evolves from
youth to senescence. Collectively, our work represents
a methodological advancement towards a more compre-
hensive characterization of organizational principles in
multivariate systems and its application provides new in-
sights into how the brain organizes itself into functionally
segregated subsystems.

RESULTS

Numerous studies investigated the modular structure
of functional brain networks. One challenge is to move
beyond the pairwise representation to reveal a more re-
alistic organization of the brain’s dynamics that includes
multivariate interactions among multiple brain areas.
Here, we address this issue by introducing an algorithm
that groups together brain areas that share a significant
amount of identical information in their neural activity,
that is, we group together maximally redundant brain
areas.

Throughout the analyses we used functional connec-
tivity (FC) data derived from resting-state fMRI record-
ings of three different datasets: the Human Connectome
Project (HCP) [27], the Microstructure-Informed Con-
nectomics (MICA-MICs) data [28], and the Nathan Kline

Institute (NKI) lifespan data [29]. As in prior work [20],
we relyed on Gaussian assumptions to estimate multi-
variate information theoretic measures from covariance
matrices encoding FC. To this end, in each dataset the
cerebral cortex was parcellated in 200 nodes [30] and co-
variance matrices were derived from time series repre-
senting BOLD signals. For more information about the
datasets and how we retrieved relevant signals, see Meth-
ods.

Community detection via Total Correlation
maximization

The most popular methods for community detection
group together nodes based on the density and strength
of their pairwise interactions. Among these, modularity
maximization [31], implemented with the Louvain algo-
rithm [32], is the most widely used in neuroscience appli-
cations. It is based on a quality function called ‘modu-
larity’ (Q) that measures the goodness of a partition by
counting how many connections fit within a given set of
modules compared to chance, i.e., what we would observe
in a null network model partitioned in the same way. The
Q heuristic can be optimized outright to discover mod-
ular community structure and the optimization can be
tuned to find modules at different spatial scales, from
coarser to finer (see also methods “Multiscale modular-
ity maximization”). While modularity maximization has
been proven useful in linking brain network topology to
function and behavior, the communities that it finds do
not account for higher-order interactions among subsets
of nodes and therefore might miss important multivariate
aspects of brain organization. Here, we overcame this is-
sue by introducing a community detection algorithm that
leverages higher-order interactions.

Information theory proposes the total correlation (TC)
as a proxy for redundancy [Il B3H35]. Given a multivari-
ate system, TC is low when every element is independent
and high when the joint state of the elements has low en-
tropy, given the individual entropies, i.e., the system is
dominated by redundant interactions. For a full math-
ematical description of TC see Equations 7 and 13 in
Methods. We hypothesized that modules are made of
maximally redundant brain areas, that is, sets of nodes
that share a large amount of information. Thus, we intro-
duced the total correlation score (TCgcore), & new quality
function that, given a partition of the brain into subsets,
estimates the redundancy of the modules compared to
chance:

1 M
TCscore = N (Tcm - E[Tcm]) (1)

m=1
with IV being the number of nodes, M the number of

modules, T'C,, the total correlation within module m,
and E[T'C,,] the mean level of integration for randomly
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FIG. 1. Schematic of the algorithm. A. TSE curves for the HCP covariance matrix. For any subset size, they provide an
estimate of the average (blue) and maximum (purple) levels of integration of the nodes in the subsets in terms of total correlation.
By partitioning the system into modules, we can compute the TC of the modules as the TC of the nodes constituting each
module. Then, we can map them in the same graph to see where these values are located with respect to the average level of
integration for subsets of the same size. The white dots are the TC of the modules of a random partition, whereas the red dots
are the TC of the modules of the optimized partition. B. A zoomed in version of panel A, which clarifies that in the optimized
partition the modules have a much higher level of integration. C. An example of a random seed partition and the partition
obtained after the optimization, projected on the cortex. D. How similar the partitions obtained from different runs of the
optimization are, measured at each spatial scale by using variation of information (VI) as the similarity metric.

selected subsets of the same size of module m. Thus,
TCgeore is higher the more the TC within modules ex-
ceeds the average TC of equal size subsets. High TCgcore
values entail a good partition, whereas for particularly
poor partitions, or very weakly integrated systems, this
quality function can even be negative.

Analogously to Q, TCgeore can be used to assess the
goodness of a partition, or it can be maximized to infer
an optimal modular structure. Here, we implemented
an optimization algorithm based on simulated annealing,
for which we report the pseudocode and a schematic in
Table [| and Figure The first step of the algorithm
consists of computing the TSE complexity curve [I]. This
provides the maximum and mean levels of integration for
any subset size for the network that we want to partition
(all possible E[TC, ] in Eq[T} and see Figure[T]A). Starting
from a random (seed) partition then, we can compute
the TC of the subsets identified by this partition and
compute TCqyeore- At this point, the algorithm randomly

TABLE 1. Pseudocode of our algorithm for community
detection via total correlation optimization. We set the
parameters as follows: H=100000 (number of iterations in the
annealing process); ITER=100 (number of times we perform
the optimization through annealing); hfrqc = 10;To = 1.

e compute TSE curve

e for it = 1 through it = ITER
e plant a random seed partition Co
e compute TCscore on Co — scoreg
e for h=0 through h=H

o define temperature T = Tp X (1 — hprac/H)"

e switch module assignment for a random
node i — C}

e compute new TCscore on C; — score;
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switches node assignments (without changing the number
of modules) and uses simulated annealing to search in the
space of solutions for a partition that maximizes TCgcore-

In Figure we report an example of what we ob-
tained by running the algorithm on the HCP data. We
projected on the cortex an initial random partition and
the partition that optimizes TCgeore. Analogously, we
display in Figure the TC of the initial random mod-
ules and the TC of the optimized modules, which is much
higher compared to the average TC of subsets of equiva-
lent size. Finally, we ran the algorithm 100 times, vary-
ing the number of modules from 2 to 12. We computed
the similarity between the 100 optimized partitions at
each resolution in terms of variation of information (VI)
[36]. Low VI values suggest that the algorithm delivered
partitions that were highly similar and consistent across
multiple attempts (Figure [ID).

Relation between TCscore and Q

How do the two heuristics, TCycore and Q, relate to
each other? To answer this question, we applied multires-
olution consensus clustering (MRCC) [37] to the HCP
FC covariance matrix and we computed the TCgeore 0N
the resulting partitions. MRCC uses the Louvain al-
gorithm to optimize Q at different spatial scales, thus
providing partitions made of finer and coarser modules.
By running MRCC, we obtained 990 partitions made of
a number of modules within the range [2, 50] (see also
Methods “Multiscale modularity maximization”). Each
one of these partitions is associated with a Q-value that
resulted from the optimization, which we compared to
the TCgeore values computed on the same partitions.
TCscore and Q are significantly and strongly correlated
(r =0.91; pval < 10 — 15; Figure ) However, if we di-
vide the ensemble of data points into groups where par-
titions have the same number of modules, TCgcore and
Q result anti-correlated (Figure 2B). This means that
TCscore and Q are linked by a Simpson’s paradox: over-
all the two variables are positively correlated, but this
correlation is reversed when the ensemble is divided into
groups. Specifically, both TCgeore and Q values increase
for coarser partitions (i.e., partitions made of fewer mod-
ules), but if we consider partitions with equal levels of
granularity the partition with higher TCgcqre is the one
with lower Q and vice versa.

We explored what might cause the anticorrelation
within partition groups. For each set of partitions with
an equal number of modules we considered the two par-
titions with the highest and lowest TCgcore (Figure )
and computed the variance of the modules size and the
symmetry of the modules between the hemispheres. The
variance of modules size was computed as the standard
deviation of the size of the modules (i.e., how many nodes
belong to one module) so that higher values mean that
the sizes of modules are heterogeneous within the par-
tition. To compute the symmetry between hemispheres,

we used a measure of “unbalance”, which for each mod-
ule counts the difference between the number of nodes on
the left hemisphere and those on the right hemisphere,
normalized with the total number of nodes. The higher
this measure, the lower the symmetry of the module
with respect to the hemispheres. The results, reported
in Figure 2IC-D, show that the partitions with the low-
est TCqyeore (higher Q) consistently present modules with
greater variance and a lower hemispheric symmetry, com-
pared to the partitions with the highest TCgeore (lowest
Q).

Altogether, these findings suggest that our newly in-
troduced TCgcore fairly recapitulates @ in some aspects.
However, TCgeore rewards modular structures that are
more symmetric between cortical hemispheres and com-
posed of modules of similar size.

Relation with the canonical systems

In the previous section, we used TCscore as a quality
function to assess the goodness of partitions found with
modularity maximization to see how well our metric re-
capitulates conventionally detected modular structures.
Here, we use our algorithm to maximize TCgcore on FC
networks. One question when inferring a new modular
structure in the human brain is how it relates to resting
state functional systems (RSFS). Throughout the neu-
roimaging literature, different labels have been applied
to RSFC communities, nonetheless, the patterns of orga-
nization have been largely consistent [38-440]. However,
all these studies have always overlooked higher-order in-
teractions among brain regions, at least in terms of re-
dundancy and synergy. In this section, we report how
the modules derived from TCscore maximization, relate
to previously reported RSFS, and specifically to well-
established canonical systems [39)].

We ran our algorithm initializing it with partition
seeds characterized by a different number of communities
(M=([2, 12]), so that also the number of communities of
the optimized partitions varied across spatial scales. For
each spatial resolution we ran the algorithm 100 times
and, for each one of these iterations, we computed the
similarity between the detected partition and the parti-
tion corresponding to the canonical systems. As an in-
dex of similarity, we used the Adjusted Mutual Informa-
tion (AMI) [41], a measure that theoretically accounts for
differences in the number of modules between two par-
titions. The AMI is bounded in the range [0, 1], with
higher values indicating higer similarity (AMI=1 means
identical partitions). As reported in Figure , at each
resolution the optimized partitions present some level of
overlap with the canonical systems (the AMI is never 0),
but at the same time, they are never identical (the AMI
is never 1). As expected, the maximum similarity is ob-
tained when M=7, that is the number of the canonical
systems.

Next, we investigated the relation of our partitions to
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FIG. 2. Relation between TCscore and Q. A. Trend of TCscore relative to Q. Each point corresponds to a partition
obtained optimizing Q on the HCP FC network and on which we computed TCscore downstream. Colors code the spatial
resolution of the partitions indicating the number of clusters. B. For each group of partitions with an equal number of modules,

we computed the correlation between TCscore and Q and reported here the correlation coefficients.

Points colored in orange

identify statistically significant correlations. C-D. Values of variance of the modules size and symmetry between hemispheres

at each spatial resolution for the two partitions with highest and lowest TCscore-

E. Example of how the positive correlation

observed in panel A is reversed if we consider groups of partitions with equal resolution (or equal number of modules). In this
case, we report the reversed correlation for groups of partitions with 6, 7, and 8 modules. We also report a projection on the
cortex surface of the modular structure of the 7-module partitions with the highest and lowest T'Cscore.

canonical systems in more detail. We focused on TC-
optimized partitions with 7 modules. A first visual com-
parison can be drawn from Figure [3B, where we rep-
resented a projection on the cortex of the two parti-
tions. We noticed that modules largely overlap, with
some differences. We further mapped how they overlap
by module/system in Figure , demonstrating that the
greatest correspondence between module assignment is
found for the visual system, the dorsal attention network
(DAN), and the limbic system, which are well captured
by modules 1, 3, and 5 of our optimized partition. The
somatomotor system (SM) splits into modules 2 and 4,
and part of it is co-assigned to the ventral attention sys-
tem (VAN). Interestingly, recent studies highlighted high

levels of co-activations between the two [42H44]. The de-
fault mode network (DMN) and frontoparietal networks
(FP) instead are mixed into modules 6 and 7, suggesting
that association areas are redistributed when consider-
ing higher-order interactions in the community detection
process. These results are consistent among the 100 it-
erations of the algorithm (Figure BD), and are neatly
replicated in the MICA dataset (Figure [S1} A-D).

Altogether these results suggest that partitions in-
ferred by considering higher-order interactions via
TCgeore maximization partially preserve the organization
recapitulated by the familiar canonical systems. How-
ever, they also suggest a different organization for regions
comprising higher order association systems.
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FIG. 3. Relation with the canonical RSFS. A. Similarity between the partitions inferred by maximizing TCscore, and
the canonical systems in terms of Adjusted Mutual Information. The boxplots summarize the statistics of the 100 iterations
of the algorithm at each spatial scale. B. Projection on the cortex surface of the canonical systems (left) and the partition
obtained optimizing TCgscore (right). For the representation of the latter, we report the centroid partition (the partition most
similar to all the others within the 100 iterations of the optimization algorithm) with 7 modules. C. In this panel, each dot is
a node and we show to which module/system it is assigned in the two partitions shown in panel B. The colors follow the RSFS
classification. D. We further measure the overlap considering the whole set of 100 partitions obtained in the 100 iterations of

the optimization. On the left, we report the frequency with

which nodes change module assignments between the canonical

systems and each one of the 100 partitions. We report this frequency at the node-level on the cortex and at the system-level
through the bar plot. Darker greys depict nodes/systems whose assignment varies the most between the canonical systems and
the optimized partitions. On the right, we report the same visualization of panel C, but considering the 100 iterations; darker
squares represent a larger overlap between modules across all the iterations.

Redundancy dominated modules across spatial scales

In this section, we provide a more thorough description
of the modular structure inferred by maximizing T'Cgcore,
analyzing how it balances segregation and integration of
information at different spatial resolutions. For this pur-
pose, we used the same set of optimized partitions of the
previous analysis. This set comprises 100 instances for
each spatial scale (identified by the number of clusters,
M=(2, 12]), derived from the HCP FC covariance matri-
ces.

First, we investigated how TCgcope varies across spatial
scales. It showed a decreasing trend with respect to M
(Figure[dA), with a peak in correspondence of partitions
made of 3 modules. This means that, as the partitions be-

come finer and modules smaller, modules are comprised
of nodes carrying less redundant information, i.e., they
become less segregated.

Then, we focused on how the information carried by
single modules is integrated throughout the system at dif-
ferent spatial scales. We hypothesized that an informa-
tionally optimal community structure is one where mod-
ules carry distinct information that becomes accessible
when observed together. This phenomenon is well cap-
tured by the notion of synergy, which we computation-
ally quantify through the organizational information, or
O-information [24]. In a multivariate system, the lower
the O-information the more the information carried by
a set of variables is synergistic (for details see Methods
“Synergistic and redundant information in multivariate
systems”). To have an estimate of how synergistic infor-
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Statistically significant correlations have been highlighted in

yellow. F. Example of such correlation for M=5. G. Projection on the cortex of the 5-module partition with highest TCscore

and lowest O-information.

mation manifests across modules, we randomly sampled
nodes from different modules, for a total of 1000 times for
each spatial scale, and computed the O-information on
the obtained subsets. For instance, in partitions made
of 7 modules, we sampled 7 nodes, each belonging to
a different module, and computed the O-information in
such subset. We carried out the same analysis on a null
model, where we sampled the same number of nodes but
at random, without considering the modular structure.
Whereas TCgeore is defined relative to a null model (the
average level of integration in the TSE curve), the O-
information lacks a similar comparison in its formuta-
tion, thus necessitating this extra null model compari-
son. We observed that the information carried by dif-
ferent modules is more synergistic in coarser partitions
(lower O-information), however, when the partitions be-
come finer, the O-information deviates more from the
null model (Figure [B). We quantified this deviation by
computing the effect size (ES) as the difference between

the means of the observed and the null O-information
(Figure ) This metric captures that in finer parti-
tions the amount of synergistic information retrievable
in a subset of nodes is more closely linked to the com-
munity structure — nodes from different modules actually
carry distinct information — whereas at a coarser scale we
might obtain greater synergy just because it is computed
on a smaller number of elements.

Next, we investigated the relationship between T Cgcore
and O-information for specific spatial scales. For any
given resolution, we computed the correlation between
the two variables across the 100 iterations (Figure E,G).
For most of the scales, TCgcore and O-information were
significantly anti-correlated: the partitions that have
maximally redundant modules are also those where the
synergy between modules is the greatest. This balance of
redundancy within and synergy between modules can be
view as an expression of the co-existence of segregation
and integration in a higher-order space.
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Once we observed the trends of redundancy and syn-
ergy across scales, we asked: is there an optimal scale
where redundancy within and synergy between modules
are maximally balanced? To answer this question, we
defined the segregation-integration balance index (B) as
follows:

B =TCscore[(1 — Oinformation)ES] (2)

Ideally, we want the B to be as high as possible:
when the three factors are high, we have maximum re-
dundancy within and maximum synergy between mod-
ules. In other words, each module is made of nodes
that share a large amount of information (high TCgcore)
and carry different information to the network (high (1
- Oinformation) x ES). Tracking this index along spatial
resolutions (Figure [{[C), resulted in a bell shape with a
peak in M=9 and highest values in the range M=[7, 9].
This is a direct consequence of what observed in Fig-
ure [4A,B. The redundancy within modules is higher in
coarser partitions. The synergy between modules is also
higher in coarser partitions, however, it deviates more
from what we would observe in a null model (measured
by ES) as the partitions become finer. Thus, it is intuitive
that a combination of redundancy and synergy, that cap-
tures the higher-order balance between segregation and
integration, can be observed at intermediate scales, when
partitions are neither too coarse nor too fine.

Altogether, these results suggest that redundancy and
synergy of brain activity within and between modules,
and their interplay, vary across spatial resolution. An
optimal balance has been found in partitions composed
of 7 to 9 modules. All the findings are replicated in the
MICA dataset (Figure [S1] E-H).

Local properties of the redundancy dominated
modular structure

Having defined globally in which way the new mod-
ular structure balances redundant and synergistic infor-
mation, we now want to characterize its local proper-
ties. Specifically, we want to investigate how much single
brain regions participate in the redundant integration of
the module to which they belong, relative to how much
they participate in the redundant integration of the whole
network. This concept is analogous to what is commonly
known in network science as participation coefficient [45],
but here we include the consideration of higher-order in-
teractions. While computing nodal measures in bivari-
ate networks is straightforward, it becomes more diffi-
cult when considering multivariate measures such as TC,
which by definition, cannot be computed on single nodes.

To address this issue, we defined the Relative Integra-
tion Coeflicient (RIC), which can be computed for each
node 7, and that is formulated as follows:

T TCN—TCn_; (3)

Where TC); is the TC computed on the module M
to which node ¢ belongs, TCys—; is the T'C' of the same
module when node i is removed, TCy is the TC' com-
puted on the whole network, and T'Cy_; is the TC com-
puted on the whole network after removing node . The
idea is that, even if we cannot compute TC on single
nodes, we can look at how much the TC increases (or
decreases) when we remove node i from the modules and
the network, in order to quantify how much it partici-
pates in the redundancy of its module compared to the
redundancy of the whole system. High RIC-values indi-
cate that the node contributes to the redundancy of the
module more than to the redundancy of the network (if
we remove it, the TC of the module becomes low, hence
the numerator is high). We call nodes with high RIC
segregator nodes, as their role is to share information
predominantly with nodes of the same module. This is
particularly true when RIC>1. On the contrary, low val-
ues of RIC indicate that the node highly contributes to
the redundancy of the whole network (if we remove it the
TC of the network becomes high, hence the denominator
is low). We call these nodes integrators, as their role is
to share information with nodes of the entire network.

In Figure we displayed the RIC distribution com-
puted on the centroid partition of the 100 instantiations
with 7 modules. It shows a left tail of integrator nodes
(low RIC-values), and a right tail of segregator nodes
(RIC>1). In Figure [5]B we localized segregator and inte-
grator nodes on the cortex and with respect to the canon-
ical systems. Segregators reside mainly in the visual and
somatomotor systems, i.e., in the sensory areas. Con-
versely, integrators can be found mostly in the DMN, FP,
and VAN; i.e., in the transmodal and association cortex.
This is plausible given their role of integrating informa-
tion from different areas to perform cognitive functions.
This local mapping is consistent across the 100 iterations
of the algorithm and spatial scales (Figure ,D). More-
over, a replication on the MICA dataset shows coherent
results (Figure [S1}1-K).

Ultimately, with this local analysis, we could assign a
role to single nodes, derived from their participation in
higher-order interactions relative to the modular struc-
ture. We were able to identify brain areas more devoted
to sharing information with similar nodes (i.e., nodes be-
longing to the same community) as well as brain areas
whose primary purpose is integrating information across
the whole network.

Redundancy dominated modular structure across
the human lifespan

Lastly, we wanted to test the ability of TC-based com-
munity detection to capture variations in functional con-
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nectivity organization that could naturally arise when
considering clinical cohorts, or large-scale multi-subject
datasets. To this purpose, we applied our new methodol-
ogy to a lifespan dataset, as the progressive modifications
exhibited during development, adulthood, and senes-
cence, are one of the most striking and well-documented
examples of functional connectivity re-organization [46-
[4g].

We leveraged the NKI dataset [29], comprised of 917
subjects with ages heterogeneously distributed between
6 to 85 years (Figure[S2A). For each one of the subjects,
we performed 100 iterations of the TCgcore Optimization
at different spatial resolutions, obtaining partitions with
a number of modules between 2 and 10. Here we reported
the results of the analysis for M=9 (for each subject we
considered the centroid partition after iterating the algo-
rithm 100 times), as we showed that it is the resolution
where segregation and integration of information are op-
timally balanced. However, the analyses have been car-
ried out at every spatial scale and the results, which were

consistent with those presented in the main text, can be
found in Supplementary Information.

First, we inspected how redundancy within modules
and synergy among them vary across the lifespan (Figure
|§|A,B). We found that T'Cgeore significantly decreases with
age (P(TCuuoresage) = —0.67, pvalirc,,.,.age) < 1071%),
whereas O-information between modules significantly in-
creases (T(Oinformation,age) = 0'403pval(Oinformation,age) <
10~15). This result, (confirmed at different spatial scales,
Figure suggests that aging is associated with a de-
crease of segregation of the network, a phenomenon
largely observed in previous studies [12]. Moreover, aging
is associated with less stability of the algorithm (Figure
[S3), which might indicate that it is more difficult to re-
trieve maximally redundant modules in older adults.

Next, we computed the RIC-values of each node, thus
mapping age-related varions of the extent to which a node
participates to the redundancy of its module. We found
that the average RIC values decrease with age (Figure
Ep), meaning that later in life nodes participate more
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module assignment across the lifespan. Yellow colors indicate high entropy, i.e., nodes that are more likely to change module,
and vice versa colors toward blue indicate nodes whose module assignment is stable. F. Projection on the cortex surface of the
nodal entropy, averaged across age-groups. G. Values of nodal entropy averaged within the canonical systems and reported for
each age group. In the upper graph the value of nodal entropy, averaged across nodes, is reported.

to the integration of the network, rather than individual means that they drive the progressive integration of the
modules. Unpacking the RIC’s trend for each canoni- network. On the other hand, nodes from the DMN and
cal system (Figure [(D), we observed that nodes in the — FP networks, classified as integrator nodes, show a mod-
somatomotor and visual systems, previously classified as est decline of RIC. Nodes from other canonical systems,
segregator nodes, have the steepest decline of RIC, which not reported in the figure, presented an intermediate pat-
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tern.

A final question is how much and in what way the mod-
ular structure changes across the lifespan. To answer this
question, we divided the dataset into 8 age groups, each
spanning 10 years. Analogously to what has been done
in [49], we used a bootstrap strategy where for 500 itera-
tions we sampled subjects in each group, to then identify
which nodes change allegiance to modules across consec-
utive groups. We quantified this change by re-aligning
the labels of the partitions with respect to those of the
first age-group and then counting the mismatched labels
across age-groups. We called the average of this mea-
sure across the 500 iterations nodal entropy (the higher
it is, the more that node changes module assignment).
We observed that the nodes belonging to the visual and
somatomotor systems are the most stable across the lifes-
pan (Figure @E,F) We also averaged this measure within
the canonical systems (Figure [|G), finding that in the
late lifespan, the reconfiguration of the modular struc-
ture is greater than at the beginning (i.e., the entropy
increases). Most of the systems reconfigure more with
age, except for the DMN and the FP networks, which
keep the most stable levels of nodal entropy.

Overall, these results suggest that our newly intro-
duced algorithm is able to track changes in functional
organization. The sensory areas overlap with the most
stable modules. However, the changes that they present
are aimed at integrating the whole system. The DMN,
FP and attention networks are those that reconfigure the
most, but they keep stable levels of integration with the
whole network from the beginning of the lifespan to the
end.

DISCUSSION

In this paper, we proposed an algorithm that uncov-
ers modular structure in functional brain networks by
accounting for higher-order interactions. Our approach
leverages the mathematical framework of information
theory to find highly redundant subsets of nodes. We pro-
vided a new view of brain organization and showed how
it contrasts with canonical functional systems and with
the modular structure uncovered with traditional meth-
ods based on pairwise interactions. The discovery of a
Simpson’s paradox relating TCgcore and modularity sug-
gests that, when higher-order interactions are accounted
for, the notion of ’structure’ in complex systems becomes
much richer than is typically observed in purely bivariate
systems. This may be a fruitful new perspective, as the
Simpson’s paradox typically reflects non-trivial interac-
tions between elements of a system, when viewed relative
to certain bounds. We also presented two new indices:
a global index that estimates how the redundant mod-
ules balance segregation and integration of information
across the whole network, and a local index that char-
acterizes node diversity in terms of contribution to net-
work integration. Finally, we delineated the evolution of
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redundant modular structure across the human lifespan.

Redundancy dominated systems of the human brain

Decades of neuroimaging research have been devoted
to defining functional systems of the human brain. Task-
based experiments identified such systems as collections
of co-activated brain areas [50} [5T]. More recently, the
idea that brain function is intrinsic [52], constantly pro-
cessing information for interpreting and responding to
environmental demands, led to a description of functional
systems of highly correlated spontaneous activity [38-40].
Proof that such systems are grounded in neurophysiol-
ogy is widespread. Not only are they largely consistent
across studies and methodologies, but some of them also
match patterns of brain damage observed in clinical co-
horts [53]. However, there exist co-fluctuating areas that
have not been firmly aligned with independently vali-
dated brain systems [I2]. Whether they correspond to
undefined brain systems or are artifacts induced by net-
work construction is yet to be determined. We argue that
accounting for higher-order interactions is an avenue to
unravel more complex relationships among brain areas.
This can lead to a different perspective on brain orga-
nization and elucidate the role of nodes that are more
difficult to place in the classical framework.

We compared redundancy dominated modules to
canonical resting-state systems. While some level of sim-
ilarity was expected (canonical systems are dominated
by redundant interactions [54]), we highlight how they
differ. Our method led to a clear identification of the vi-
sual and somatomotor systems, and the dorsal attention
network, which are also the systems more consistently de-
tected across reports. However, the somatomotor system
is split into two modules. This is consistent with a dorsal
and a ventral representation of such system, reported in
[38]. In our partition, some brain areas normally associ-
ated with the ventral attention system are co-assigned to
nodes of the ventral part of the somatomotor area. Inter-
estingly, previous reports showed co-fluctuations among
those regions [42H44]. This is an example of how be-
yond pairwise interactions offer a different angle on how
co-activated brain regions could form coherent systems,
still grounded in neurophysiology. As for the brain ar-
eas belonging to the frontoparietal system and DMN,
these converge into two redundant modules where they
are mixed. Future investigations will clarify the role of
these new systems during tasks, cognitive functions, or
disease progression.

A higher-order lens on segregation and integration
of brain systems

The modular organization of the human brain supports
segregation and integration of information among func-
tional brain systems [3], enabling cognition and behavior.
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Recent studies [56] found proof that local within-systems
connectivity is critical for motor execution, and between-
systems connectivity is crucial for cognitive tasks. Fur-
thermore, brain organization benefits from the coexis-
tence of segregation and integration. While lack of seg-
regation hampers functional specialization and fails to
protect the system from the spreading of disease [57],
a complete disconnection between brain systems is as-
sociated with brain disorders (e.g., Alzheimer’s [58] and
Parkinson’s [59] disease, or schizophrenia [60]) and leads
to cognitive deficit [61].

In our work, we explored how the balance between seg-
regation and integration is expressed when considering
higher-order interactions. Notably, the TSE complexity
[1], that inspired our TCgcore, was designed to capture
how brain dynamics optimizes segregation and integra-
tion of information. However, it did not account for
any modular structure, which now we know is central
to brain organization. Instead, we hypothesize that the
dichotomy of segregation-integration is supported by a
mesoscale organization made of subsystems where brain
activity is redundant (copied over the system’s elements)
and whose interaction with each other leads to a new
type of information, which is synergistic, that goes be-
yond functional and local specialization. Interestingly,
we found these two measures to be anti-correlated: the
brain is organized such that the more redundant infor-
mation we find within subsystems, the more synergis-
tic information we find between them. This means that
spontaneously and even under a higher-order perspective,
brain activity manifests in a manner where segregation
and integration are maximized. We further character-
ized the balance between segregation and integration via
an index that tracks how information encoded in brain
activity is redundant within subsystems and synergis-
tic between them. We explored how this index is con-
veyed across spatial resolutions, finding that a division
of the neocortex into 9 subsystems optimizes the above-
mentioned balance, immediately followed by partitions
into 8 and 7 subsystems.

Nodal diversity in redundancy-dominated modular
structure

Given a division of the brain into subsystems, individ-
ual nodes can behave differently in how much they inter-
act with nodes of the same system versus how much they
interact with other nodes assigned to different systems.
In this sense we might say that they serve distinct func-
tional roles, especially if they are highly interconnected
hubs: they either foster local specialization (provincial
hubs), or facilitate inter-module communication (connec-
tor hubs). The participation coefficient [45] [62] was in-
troduced to quantify the extent to which they cover one
role or the other. Many reports located connector hubs in
the association cortex [I4} [63] [64] highlighting how they
are involved in a wide repertoire of tasks and functions

[65], 6] .

All these findings build on a dyadic view of the in-
teractions among brain regions. Recent works [67, [68]
studied how being a hub affects computation capacity
estimated in terms of multivariate information process-
ing, and information theory has also been used to ex-
tend the formulation of participation coefficient to the
case where multiple sets of partitions can describe the
mesoscale organization of a complex system [69]. How-
ever, a measure able to capture the role of the nodes in
the modular organization, which also accounts for higher-
order interactions, is missing. Thus, we introduced the
Relative Integration Coefficient. By shifting the concept
of participation coefficient to a higher-order space, we
identified segregator and integrator nodes based on the
amount of information shared with co-assigned and non-
coassigned nodes. Integrators mainly reside in the sen-
sory areas, whereas segregators lie in the DMN, ventral
attention, and frontoparietal networks. Notably, brain
regions whose predominant role is to enhance modular
redundancy were also found to be the most synergistic
areas in the system, regardless of the modular structure
[20, 23]. A similar distinction between sensory and as-
sociation areas has also been observed in [70], where the
study of co-fluctuations between sets of three and four
regions saw the sensory areas as maximally coherent, as
opposed to association areas. Future works will elucidate
how these maximally synergistic, provincial, coherent ar-
eas engage during tasks or in different clinical cohorts.

Brain redundant subsystems have unique
trajectories during the lifespan

The application of our algorithm to a lifespan dataset
mainly served the purpose of validating its ability to de-
tect changes in modular organization. Nonetheless, un-
derstanding how higher-order interactions change across
the years, and with them the emerging modular struc-
ture, is of crucial importance and here we provided a
first glance at it.

Alterations in the organization of brain connectivity
have been observed, even in the absence of disease, in
anatomical and functional networks, and in their rela-
tionship [46H49L [7T]. Thus, it is safe to assume that multi-
variate interactions among brain regions are also subject
to change over the lifespan. By uncovering redundancy-
dominated modules in subjects between 6 and 85 years
old, we tested if, and to what extent, our algorithm
is able to capture such changes. First, we observed a
decrease within-module redundancy, and thus segrega-
tion of information, associated with aging. Evidence of
this phenomenon is overwhelming in analyses of pair-
wise connectivity [(2H76], but also in those accounting for
higher-order interactions [77, [78]. The fact that we could
replicate this ensures that our algorithm is able to track
changes in modular organization. We then extended our
analysis by portraying how the heterogeneity of node pro-
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cessing with respect to the modular organization unravels
over the lifespan. We found that segregators became in-
creasingly less so with age, whereas integrators became
only mildly more integrated in the system. This sug-
gests that the decreased segregation is majorly driven
by sensory areas that share more and more information
with other systems. This might align with a reduction
in the distinction between connector and non-connector
nodes in less segregated systems [72]. We also described
the reconfiguration of redundant brain systems, finding
that regions in the dorsal attention and ventral attention
networks are more prone to change module assignment.
Taken together, these results indicate that sensory areas
form brain systems that are the most stable throughout
the lifespan, but at the same time, they drive the drop of
segregation of information by sharing increasingly more
information with regions outside of sensory cortex.

Technical considerations and future directions

A first technical consideration is that all the measures
here reported are built upon the covariance matrices of
couples of variables, so they come with an assumption of
linearity of the data. Talking about redundant and syn-
ergistic interactions in this context might sound counter-
intuitive. However, prior works show that it is possible
to search for higher-order interactions in a linear system,
only capitalizing on its pairwise relationships. In [79] it
has been shown that purely Gaussian systems can present
higher-order synergies and that total correlation is tied
to mutual information. Thus, polyadic dependencies can
be observed even in linear systems. Even from [80] we
know that the multivariate Gaussian is the maximum en-
tropy distribution constrained by pairwise covariance. In
other words, pairwise linear interactions set the structure
upon which beyond-pairwise interactions coexist.

It is also important to note that the covariance matri-
ces used in this paper are derived from BOLD time series
of different lengths in the three datasets. In the HCP and
MICA datasets we concatenated data from every subject
at the node level, obtaining time series with a large num-
ber of samples; in the NKI we derived FC matrices at
the subject level, from shorter time series. Information
theory measures are sensitive to the length of the data on
which they are computed, and from the current results it
is clear that they lie in different ranges when computed
on the NKI single-subject data. Thus, we pursued a sim-
ulation study to test how having fewer data points skews
such measures (Figure . We found that TC is overes-
timated when computed on shorter time series and this
effect worsens the larger the subset size. However, this
bias is consistent across iterations such that it does not
invalidate our analyses. The effect shows constant mag-
nitude for a given length of time series, which presumably
is protracted across subjects in the same way, allowing
between-subject comparisons.

Another source of ambiguity is the global signal regres-
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sion (GSR) performed on the BOLD time series. Pre-
vious studies suggest that global signal influences func-
tional connectivity in a way that is spatially non-uniform,
and there is a synergistic interaction between the two sig-
nals [8I]. Moreover, GSR removes a large amount of re-
dundancy present in the data [20]. Because we leveraged
Gaussian assumptions to compute multivariate informa-
tion theoretical measures on covariance matrices, possible
confounds have to be taken into account. Nonetheless,
the proposed framework is independent of the specific
neural signal and could be replicated on datasets exploit-
ing different neuroimaging modalities.

A possible limitation of our framework is that the num-
ber of communities provided as output is determined a
priori by the number of communities that we impose in
the seed partition. The algorithm, implemented as it is,
cannot tune the spatial resolution. We tried to overcome
this issue not only by examining redundant modular or-
ganization in a broad range of spatial scales, but also by
attempting to identify the most interesting scales, char-
acterized by an optimal balance between segregation and
integration of information. Besides, an advantage of our
framework is that it can be applied broadly to any set of
multivariate time series. Its formulation is irrespective
of the fact that our field of application is neuroscience
and it can be tested on other complex systems, such as
biological [85], ecological [86], and epidemiological [87].

This paper opens the door to a multitude of future in-
vestigations. One question is how the balance between
higher-order segregation and integration is manifested in
clinical cohorts. Several brain diseases are known to lack
this balance [88] and multivariate information theory has
already been proven relevant in clinical and behavioral
contexts [89HIT]. Intuitively, given that neurotypical cog-
nitive functioning requires the coordination of multiple
brain regions [2, 92], beyond pairwise frameworks are
needed to discover biomarkers of neurodegeneration on-
sets. Another line of research revolves around the rela-
tionship between structural and functional connectivity.
Ebbs and flows of modular organization [93]can be rean-
alyzed exploiting our measures, introducing sensitivity to
higher-order interactions. Finally, one can pursue inves-
tigations where our framework is modified to accommo-
date, for instance, a different quality function that opti-
mizes not only the redundancy within module, but also
the synergy between modules. This would require pre-
liminary steps where a graph similar to the TSE is built
for the O-information, so that it can also be compared to
a chance level. Further modifications can accommodate
multilayer investigations. In the case of modularity max-
imization, having a multilayer formulation [94] has been
proven convenient to track modular structure across time
[95], subjects [96], or types of connectivity [97] because
nodes labeling is consistent across layers. We do believe
that a similar advantage is in fact achievable with our
algorithm if we optimize individual layers planting the
same seed. Future investigation will elucidate the feasi-
bility of this direction.
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METHODS
Datasets and data processing

The analyses presented in this paper were conducted
on three independent resting state fMRI datasets, de-
rived from the Human Connectome Project (HCP) [27],
the MICA57 (an open-source repository) [28], and the
Nathan Kline Institute Rockland Sample (NKI) [29].
Several previous studies have used those datasets and
described in detail their image acquisition and prepro-
cessing pipelines (see for instance [98] for the HCP, [21]
for MICA, and [99] for the NKI). In the following para-
graphs, we recapitulate them.

HCP

The HCP data were derived from 100 unrelated sub-
jects, who provided informed consent. The study pro-
tocols and procedures were approved by the Washing-
ton University Institutional Review Board. Resting-
state fMRI (rs-fMRI) data were collected with a Siemens
3T Connectom Skyra (32-channel head coil) during four
scans in two separate days. A gradient-echo echo-planar
imaging (EPI) sequence (scan duration: 14:33 min; eyes
open) was used with the following acquisition parame-
ters: TR=720ms; TE=33.1ms; 52° flip angle; isotropic
voxel resolution = 2mm; multiband factor = 8.

Functional data were mapped into 200 regions covering
the entire cerebral cortex, identified via the parcellation
scheme proposed in [30] and aligned to the Yeo canonical
resting state networks [39]. A rigorous quality control
of the images was performed and led to the exclusion
of 5 of the 100 unrelated subjects. Exclusion criteria
included mean and mean absolute deviation of the rela-
tive root mean square (RMS) motion across resting-state
fMRI and diffusion MRI scans. Four subjects exceeding
1.5 times the interquartile range of the measure distri-
butions were excluded. One subject was then excluded
because of a software error during diffusion MRI prepro-
cessing. Downstream quality control, the data included
95 subjects, 56% female, with a mean age of 29.29 + 3.66.

Following a minimal preprocessing pipeline described
in [100], functional images were corrected for gradient
distortion, susceptibility distortion, and motion, and
then aligned to the T1-weighted data. The volume was
corrected for intensity bias, normalized to a mean of
10,000, then projected onto the 32k_fs_LR mesh, and
aligned to a common space with a multimodal surface
registration91. Moreover, global signal regression (GSR)),
detrending and band pass filtering (0.008 to 0.08HZ) were
performed [101]. Finally, the first and last 50 frames of
the time series were discarded, resulting in a scan length
of 13.2 min and 1,100 frames.

MICA

The MICA dataset was approved by the Ethics Com-
mittee of the Montreal Neurological Institute and Hos-
pital, and includes 50 unrelated subjects, who provided
written informed consent. Resting-state fMRI data were
collected using a 3T Siemens Magnetom Prisma-Fit (64-
channel head coil). Data collections included a single
scan session of 7 minutes during which participants were
asked to look at a fixation cross. An EPI sequence
was executed with the following acquisition parameters:
TR=600ms; TE=48ms; 52° flip angle; isotropic voxel res-
olution = 3mm; multiband factor = 6.

Data were mapped in 200 regions of the cerebral cortex
following the same parcellation scheme used for the HCP
data and described in [30]. Functional images were pre-
processed as outlined in [28]. Briefly, data went through
motion and distortion correction, as well as FSL’s ICA
FIX tool trained with an in-house classifier. Nodes were
defined in the FreeSurfer surface and used to project each
subject’s time series. More details about preprocessing
can be found in [102], where the Micapipe93 processing
pipeline is thoroughly described. Downstream, GSR was
performed, as also done for the HCP data.

NKI

The NKI dataset consists of imaging data from a com-
munity sample of subjects encompassing a large portion
of the lifespan. All participants gave written informed
consent. The study received approval by the Institu-
tional Review Boards of Nathan Kline Institute and Mon-
clair State University. fMRI data were collected with
a Siemens Magneton Trio (12-channel head coil), dur-
ing a scan that lasted 9:40 seconds, where 971 partic-
ipants were instructed to fixate a cross. Images were
acquired using a gradient-echo planar imaging sequence
with acquisition parameters set as follows: TR=645ms;
TE=30ms; 60° flip angle; isotropic voxel resolution =
3mm; multiband factor = 4.

Quality control of the data included excluding subjects
if the scans exceeded 1.5 interquartile range in three or
more of the following metrics: DVARS standard devia-
tion, DVARS voxel-wise standard deviation, framewise
displacement mean, AFND’s outlier ratio, and AFNI’s
quality index.

Also for this dataset, the images were mapped onto
200 cerebral regions using the parcellation scheme in [30].
The fMRI data were preprocessed using the fMRIPrep
version 1.1.8 [I03], which comprises the briefly listed
following steps, also described in its documentation.
The workflow utilizes ANTs (2.1.0), FSL (5.0.9), AFNI
(16.2.07), FreeSurfer (6.0.1), nipype [104], and nilearn
[105]. FreeSurfer’s cortical reconstruction workflow (ver-
sion 6.0) was used to skull strip the T1w, which was then
aligned to the MNI space. Functional data were slice time
corrected and motion corrected, using AFNI 3dTshift
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and FSL mcflirt, respectively. “Fieldmap-less” distor-
tion was performed by co-registering the functional im-
age to the same-subject T1w with intensity inverted [106]
constrained with an average fieldmap template [107], im-
plemented with antsRegistration. Then, boundary-based
registration [I08] was performed using bbregister to co-
register the corresponding T1w. Motion correcting trans-
formation, field distortion correcting warp, and BOLD-
to-T1w transformation warp were concatenated and ap-
plied altogether using antsApplyTransforms with Lanc-
zos interpolation. For each functional run, frame-wise
displacement [I09] was computed using Nipype. The
first four frames of the BOLD data in the T1lw space
were discarded. After following the fMRIPrep pipeline,
images were linearly detrended, band-pass filtered (0.008-
0.08 Hz), confound regressed, and standardized. Further-
more, spike regressors for frames with motion greater
than 0.5mm framewise displacement were applied. Fi-
nally, GSR was performed.

Covariance matrices definition

Asin [20], the HCP-based empirical analyses presented
in this paper were conducted after combining all scans
and subjects to obtain a single covariance (or FC) ma-
trix representing a grand-average of the sample. For
this purpose, BOLD time series were concatenated at
the node level and Pearson correlation was computed for
each node pair. The same grand-average FC matrix was
computed with the MICA data. With the above-chosen
parcellation of the cortex, which rendered 200 nodes rep-
resenting different brain regions, the average FC matrices
of the HCP and MICA datasets were highly correlated
(r = 0.851, pval < 10715).

For the NKI-based analyses instead, we built FC ma-
trices at the single subject level, as we wanted to be able
to track individual differences linked to age. Thus, the
Pearson correlation was computed for each pair of nodal
time series, for each subject. After building the distribu-
tion of the mean FC values across subjects, we discarded
those subjects whose mean FC exceeded the 95 percentile
of the distribution. This left us with 917 covariance ma-
trices relative to 917 subjects of age between 6 and 85
years old.

Redundant and synergistic information in
multivariate systems

In this paper, we quantified higher-order interactions
by means of information theory. Specifically, given a mul-
tivariate set of signals (e.g., BOLD time series), we used
the mathematics provided by information theory to mea-
sure how much the information carried by the system is
shared among the variable, i.e., redundant information,
and how much it banks on each variable’s contribution,
i.e., synergistic information [25].

15

As with most measures introduced in information the-
ory, redundancy and synergy capitalize on the basic no-
tion of entropy [I10], which quantifies the uncertainty
associated with the state of a variable when only its dis-
tribution is known. Mathematically, if X is a discrete
random variable, and P(X = x) is the probability distri-
bution of its states, the entropy is formulated as follows:

Hy =~ 3" P(X)log, P(X) Q)
reX

In the case of a bivariate system, where we have ac-
cess to two random variables X; and X5, entropy is used
to compute the Mutual Information (I) [T10], which cap-
tures how much knowing the state of the variable X;
reduces the uncertainty associated with the state of Xs.
Mathematically, I is formulated as follows:

I(Xl,XQ):H(X1)+H(X2)—H(X1,X2) (5)
= H(X1,Xo) — [H(X:1 | X2) + H(X> | X1)]
Moving towards multivariate systems then, i.e., sys-
tems comprised by more than two variables, we can quan-
tify higher-order dependencies by extending the MI for-
mulation [I1I]. There exist multiple generalization of
MI. Here, we focus on three of them that will be nec-
essary to quantify redundant and synergistic information
in neural data. These are: Total Correlation (TC) [II, B3],
Dual Total Correlation (DTC) [112], and Organizational
Information (€2) [24]. The TC is derived as in Eq. [6}

where X = {X7, Xo,..., Xx} is a macro-variable com-
prising a set of N random variables and H (X) is the joint
entropy of X. T'C' is low when every variable is indepen-
dent and high when the joint-state of the whole system
has low entropy. In other words, TC increases mono-
tonically as the system X transitions from randomness
to synchrony. TC can be used as a measure of redun-
dancy: a multivariate system is dominated by redundant
interactions when the variables share a large amount of
information, hence, the state of a single variable consid-
erably reduces the uncertainty associated with the state
of every other variables, i.e., TC is high.

MI can be also generalized via the DTC as follows in

Eq. [

N
DTC(X)=H(X)-> H(X;| X (7)
i=1

where H(X; | X~%) is the residual entropy, that is the
uncertainty associated with the state of the variable X;
that is not disclosed by the state of any other variable,
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or subsets of variables, comprised in X. With this dif-
ference, DTC captures all the entropy that is shared at
least between two elements of X. Contrarily to TC, DTC
is high in systems where some information is shared, but
is low in both cases where X comprises totally random
or synchronized variables.

The organizational information is the difference be-
tween TC and DTC (Eq. , so that when it is pos-
itive (TC(X)>DTC(X)) redundant information among
the variables is predominant, whereas when it is nega-
tive (TC(X)<DTC(X)) the system is characterized by
information that is both shared but not redundant.

Q(X) = TC(X) — DTC(X) (8)

) is low in systems dominated by synergistic interac-
tions and high in systems dominated by redundant in-
teractions, and we used it as a proxy for synergy in our
empirical analyses. For a thorough discussion on how the
O-information can be interpreted see also [113] [114].

Information theory in Gaussian systems

All the information theoretic measures reported above
require the estimation of the entropy H(X), and specifi-
cally of P(x), which can be challenging on empirical con-
tinuous data, like fMRI BOLD signals. However, for
normally distributed (Gaussian) multivariate systems,
closed-form estimators exist [I15] that make the compu-
tation of the joint entropy easier. Under the assumption
that BOLD data follows a multivariate Gaussian distri-
bution — an assumption supported by numerous studies
[IT6HITI8] — we can exploit those close-form estimators
and derive information theoretical measures directly from
the covariance matrix.

For a single Gaussian random variable X ~ N(u, o),
the entropy can be computed as:

In(2mea?)

Y (X) = 25

9)

For a multivariate Gaussian random variable X =
{X1,X2,...,Xn}, the joint entropy can be computed
as:

In[(2mec) N |S]]

Y (X) = 2T

(10)
where |¥| denotes the determinant of the covariance
matrix of X.

Similarly to what has been shown in the previous sec-
tion, we can generalize these formulations of entropy and
derive the MI of a bivariate system comprising the vari-
ables X; and X5. Then, given the Pearson correlation
coefficient between X; and X5, here referred to as p, the
MI can be written as:

—In(1 —p?)

V(X1 X,) = 5

(11)
Finally, the estimator for the total correlation of a mul-
tivariate Gaussian system has the following formulation:

_ (=)

TCN (X) 5

(12)

Then, from these equations, it is straightforward to
rewrite in close-form both the dual total correlation and
the organizational information. For a more thorough de-
scription of how information theoretical measures can be
drawn in close-form see also [20] [115].

Multiscale modularity maximization on brain
networks

Modular structure was inferred on the HCP dataset via
modularity maximization [31], which, given an adjacency
matrix, returns partitions of the networks into modules
that are maximally internally dense with respect to a
chance level (or null model). Modularity is commonly
indicated with Q and is formulated as follows:

Q(y) =Y Wiy = yPyjl8(04,95). (13)

j

where W;; and P;j; are the weights of the connections
between node ¢ and node j in the adjacency matrix W
and in the null model P, v is a resolution parameter, and
d(0s,05) is a factor whose value is 1 when ¢ and node j
belong to the same community and 0 otherwise.

The choice of the null model P is non-trivial. The
weight that we expect to find between two nodes strongly
depends on the characteristics of the adjacency matrix W
[I19]. For covariance matrices, i.e., full weighted matri-
ces, a reasonable choice is the Potts null model, where
P;; holds the same value for every pair of nodes and is
modulated by 7. The choice of v then, defines the spatial
resolution of the partition in terms of size and number of
modules, so that low ~-values yield to a coarse modular
structure, whilst high ~-values produce a finer modular
structure.

In this paper, we applied a 2-step multiresolution
approach, called multiresolution consensus clustering
(MRCC) [37]. In the first step, we linearly sampled 1000
values of v in the range [0, 1] and we ran modularity
maximization with each one of these y-values obtaining
1000 differently resolved partitions. At this point, two
~v-values have been identified, v, and g, which gener-
ated partitions with a number of modules between 2 and
N/4 (with N = 200 being the number of nodes). Then,
in the second step, we linearly sampled 1000 values of v,
but this time in the range [y, vg|, running modularity
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maximization with each of these values. Again, retaining
partitions with at least 2 and maximum N/4 modules,
we obtained 990 partitions (10 7-values/partitions did
not survive the limits imposed on clusters number) at
different spatial resolutions that we used for our empiri-
cal analyses.

DATA AND CODE AVAILABILITY

and MATLAB
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code to re-
https:
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Replication of the analyses on the MICA dataset. A. Distance between the canonical systems and the

partitions obtained optimizing TCscore on the MICA dataset, in terms of adjusted mutual information (AMI). A peak has been
found in partitions with 7 modules, where AMI is on average maximum. B. Projection on the cortex surface of the canonical
systems (up) and of an example of redundancy dominated partition with 7 modules (down). C. Frequency with which nodes
change module allegiance between the 7-modules partitions and the canonical system across 100 iterations of the TCscore
maximization. D. Mapping of each node module allegiance in the partitions shown in panel B. E-H. Trends across spatial
resolution of TCgcore, O-information, Effect Size (between the observed and the null O-information), and B. I. Distribution of
RIC values computed for every node of the 7-modules centroid partition. J-K. Mapping of segregator (green) and integrator
(pink) nodes among the canonical systems and on the cortex surface.
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FIG. S2. A. Distribution of the NKI population across the lifespan. The colored rectangles in the background define the
age-groups identified for the second half of the analyses presented in the main text. B. Mapping on the cortex of the centroid
partitions derived from each age group.

VI from centroid

9 MODULES
1 -15 ©
r=0.37, p I<10 o
val O§ o
0.35 8o
0.25
0.15 2

10 20 30 40 50 60 70 80
Age

0.5

0.4

AMI from Yeo

0.3

9 MODULES

o ¢}
r=-0.17,p <10°

10 20 30 40 50 60 70 80
Age

7 MODULES

I
3

AMI from Yeo
o
n

o
w

| P R PP
° ro— -0.27, pval<10

10 20 30 40 50 60 70 80
Age

FIG. S3. A. Having 100 iterations of the TCscore maximization for each subject, we plot the average variation of information
(VI) between the centroid partition and all the other 99 partitions for each subject. Because there is a positive correlation
between this VI and age, we can conclude that aging is associated with less stability of the algorithm. B-C. Distance, in terms
of adjusted mutual information (AMI), between the canonical systems and the TCscore Optimized partitions across the lifespan.
The negative correlation denote an increasing divergence from the canonical system associated with age.


https://doi.org/10.1101/2024.07.22.604675
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.22.604675; this version posted July 23, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

27

0.5} 0
14} o oM o |[eam
e 3M 04 ®. e 3M
o 4M T °
o 127 )’ e 4M
g ° SM 203 Y ° ° 5M
3 10t ° o o ° oM = o o ° 1 e 6M
O 1 o . S ° 7™ @) ozl o o o o o 7M
® o e 5 © 8M : ° o ° °o 8M
| o 5 o o A [ e o .-
8 ° L © ° * [ ° 9M © o o e o 9M
6 o © o ¢ ° 0o o 10M 0.1 ° o o © . o 10M
Yoo 2 9 o g e 1 e e
© o o o o e —@
6 il © [e) — 0 7,,'4.,,*”*’\0
o —8-8 ¢ % s s
D D oD D H H %D oD D D aH 0 H H 4D D

Age Age

FIG. S4. Trends across the lifespan of the TCgscore and O-information for partitions with different spatial resolution, presenting
from 2 to 10 modules. In order to have a clearer visualization, we reported average values computed resampling TCgcore and
O-information within age-groups.
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FIG. S5. Starting from the HCP combined time series, we tested subsets of different sizes represented by columns (N=20, 30,
and 40) and for each one of them we recalculated the TC keeping progressively fewer data points: half of the data points (blue),
then only a quarter (orange), then an eight (yellow), then 4400 (purple), and then 1100 (green), which is the length of a single
scan. The random data points were dropped 1000 times per subset. In the first row, we report the difference between the TC
computed on the full dataset and the average TC computed on each subset’s 1000 randomizations with less data. The more
time points are discarded, the more TC results overestimated. Moreover, the overestimation becomes worse with increasing
subset size. In the second row, we report the standard deviation of the TC computed on different fractions of the data for each
subset. TC values vary more when less data is included in the calculation. Again, this phenomenon worsens with increasing
subset size.
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