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a b s t r a c t 

The human brain is a complex network of anatomically interconnected brain areas. Spontaneous neural activity is constrained by this architecture, giving rise to 

patterns of statistical dependencies between the activity of remote neural elements. The non-trivial relationship between structural and functional connectivity poses 

many unsolved challenges about cognition, disease, development, learning and aging. While numerous studies have focused on statistical relationships between 

edge weights in anatomical and functional networks, less is known about dependencies between their modules and communities. In this work, we investigate and 

characterize the relationship between anatomical and functional modular organization of the human brain, developing a novel multi-layer framework that expands 

the classical concept of multi-layer modularity. By simultaneously mapping anatomical and functional networks estimated from different subjects into communities, 

this approach allows us to carry out a multi-subject and multi-modal analysis of the brain’s modular organization. Here, we investigate the relationship between 

anatomical and functional modules during resting state, finding unique and shared structures. The proposed framework constitutes a methodological advance in the 

context of multi-layer network analysis and paves the way to further investigate the relationship between structural and functional network organization in clinical 

cohorts, during cognitively demanding tasks, and in developmental or lifespan studies. 
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. Introduction 

The human connectome is the complete set of white-matter con-

ections among neural populations ( Hagmann et al., 2008; Sporns,

011 ). This wiring diagram can be mapped and reconstructed using non-

nvasive imaging and represented as a graph or network ( Bassett and

porns, 2017 ). The connectome shapes pattern of neural activity, in-

ucing correlations - functional connections - between remote neu-

al elements ( Fox et al., 2005; Friston, 1994; 2011 ). Human cognition

nd behavior are thought to be mediated by these distributed patterns

f anatomical and functional connectivity among different brain areas

 McIntosh, 2000; Mi š i ć and Sporns, 2016 ). 

The relationships between structural and functional connectivity is a

entral concept in network neuroscience, and linking brain function to

ts architecture is a long-standing goal in brain research ( Honey et al.,

010; Park and Friston, 2013 ). A growing body of literature addresses

his issue by trying to predict features of functional connectivity from

tructural features ( Messé et al., 2015; Sarwar et al., 2021 ) (for a review

ee ( Batista-García-Ramó and Fernández-Verdecia, 2018; Suárez et al.,

020 ) or ( Bansal et al., 2018 )). This has been done by implementing sta-
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istical ( Mi š i ć et al., 2016; Vázquez-Rodríguez et al., 2019 ) or commu-

ication ( Crofts and Higham, 2009; Goñi et al., 2014; Zamani Esfahlani

t al., 2022 ) frameworks, considering the coupling with biophysical dy-

amic systems ( Adachi et al., 2012; Breakspear, 2017; Deco et al., 2009;

oney et al., 2007; Stam et al., 2016 ), or observing how brain lesions

ffect functional organization or link to behavior ( Thiebaut de Schotten

t al., 2020 ). 

In addition to predicting one from another, structural and functional

etworks can be jointly analyzed to investigate common organizational

roperties, like modular structure, and see how they relate to each other.

odular organization is a hallmark of brain networks ( Meunier et al.,

010; 2009; Sporns and Betzel, 2016 ) where groups of nodes are ar-

anged into densely connected communities that support specialized

ognitive function ( Medaglia et al., 2015 ). This property has been ob-

erved in both anatomical and functional networks at different spatio-

emporal scales ( Betzel and Bassett, 2017 ). In fact, brain networks can be

artitioned into communities in many different ways, resulting in either

mall modules, made of functionally specialized areas ( Rosenthal et al.,

017 ), or large modules, hypothesized to support complex cognitive

unctions. A first contextual study ( Betzel et al., 2013 ) mapped struc-
tober 2022 
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ural communities (defined in terms of random walks) to patterns of

unctional connectivity, suggesting that such communities model brain

unction. More recently, in ( Diez et al., 2015 ), hierarchical modular

tructure has been investigated in group-average structural and func-

ional networks, finding that there exist partitions that are highly mod-

lar in both types of connectivity. In ( Fukushima et al., 2018 ), the over-

ap between structural and functional weights and modules has been

nvestigated during different states of integration and segregation of

ime-varying functional networks, finding that structure and function

re closer when functional connectivity presents an integrated network

opology. However, a straightforward analysis of the interplay between

natomical and functional modules is missing. 

In parallel, a growing number of studies have begun investigating

ulti-layer network models of brains ( De Domenico, 2017; Vaiana and

uldoon, 2018 ). The multi-layer framework allows for multiple in-

tances or observations of a networked system to be analyzed under

 single model. In the context of brain network analysis, multi-layer

etwork models can be constructed to capture the covariance structure

f functional brain data ( Bassett et al., 2011; Betzel et al., 2017; Braun

t al., 2015; De Domenico et al., 2016; Puxeddu et al., 2020; Shine et al.,

016 ) or to establish node correspondence across networks representing

ifferent subjects’ brains ( Betzel et al., 2019 ). 

In this work, we introduce a novel extension of the multi-layer frame-

ork to directly investigate the relationship between anatomical and

unctional modular organization, which also accounts for the multi-scale

ature of modules and their subject specificity. This approach is con-

eived as an extension of the well-known, and widely employed, multi-

ayer modularity maximization model ( Mucha et al., 2010 ). One of the

reatest advantage of this model lies in its flexibility, and previous work

emonstrated that one can easily modify its skeleton to address specific

uestion of neuroscience ( Zamani Esfahlani et al., 2021 ). Building on

hese works, we reformulate the coupling scheme of multi-layer modu-

arity maximization. We incorporate a double inter-layer resolution pa-

ameter, one regulating the coupling between structural and functional

onnectivity matrices, and the other one regulating the inter-subject

oupling. Thus, we simultaneously map communities across subjects and

odes of connectivity, which enables direct comparison of multi-modal

odules via community labels. We applied this model to MRI-derived

natomical and functional brain networks of healthy adults, to investi-

ate how the modular structure of brain networks varies across subjects

nd connectivity modality. We describe which brain sub-systems form

odules consistent across modalities and those that decouple from one

nother to form modality specific modules. In summary, our work ex-

ends the multi-layer modularity maximization framework and paves

he way for future studies to investigate structure-function relationships

n different contexts. 

. Methods 

.1. Experimental datasets and data processing 

We leveraged anatomical and functional MRI data belonging to two

ndependently acquired datasets that we describe below. 

KI dataset 

First, we considered data from the Nathan Kline Institute Rock-

and Sample project ( Nooner et al., 2012 ) (NKI-RS, http://fcon_

000.projects.nitrc.org/indi/enhanced/ ). Institutional Review Board

pproval was obtained for this project at the Nathan Kline Institute

#226781 and #239708) and at Montclair State University (#000983

 and #000983B) in accordance with relevant guidelines. All par-

icipants gave written informed consent or assent. The anonymized

ataset is freely available at http://fcon_1000.projects.nitrc.org/

ndi/enhanced/neurodata.html . The NKI dataset consists of imaging

ata from a community sample of subjects across a large portion of

he human lifespan. We focused our analyses to subjects within the age
2 
ange of 20–40 years old, to concentrate on structure-function relation-

hips without added influence of age-related changes. The data process-

ng resulted in anatomical and functional networks made of 100 nodes

rom 123 subjects. 

CP dataset 

We also analyzed data from the Human Connectome Project (HCP)

 Van Essen et al., 2013 ), a consortium projected to construct a map of

uman brain circuits and their relationship to behavior in a large popu-

ation of healthy adults. The study was approved by the Washington Uni-

ersity Institutional Review Board and informed consent was obtained

rom all subjects. It comprises a large cohort of subjects ( > 1000), from

hich multiple imaging data were acquired (diffusion MRI, resting-

MRI, task-fMRI and MEG/EEG), together with behavioral and genetic

ata. Details of the image acquisition and minimal preprocessing can be

ound in ( Glasser et al., 2013 ). We focused only on the 100 unrelated

ubjects. Of the 100 subjects, 5 have been excluded after preprocess-

ng. This resulted in obtaining structural and functional networks of 95

ubjects (56% female, mean age = 29.29 ± 3.66, age range = 22–36).

he processing of the data was made with the same cortical parcellation

sed for NKI data, which led to structural and functional networks made

f 100 nodes. 

ransformation of anatomical networks into correlation networks 

One important consideration to keep in mind when pursuing analysis

n structure-function relationships, is that these two types of networks

ave differing interpretations and different topology. Anatomical net-

orks embody physical pathways linking distinct brain regions. Their

eights represent white-matter fiber tracts and are all non-negative.

oreover, while their density might vary based on the dimension of

rain regions (i.e., parcellation adopted in the data processing) or recon-

truction procedure, generally they are sparse. On the contrary, func-

ional networks encode statistical relationships between the activity

ecorded from distinct brain regions. In our case they measure the cor-

elation of BOLD activity between two brain areas, resulting in fully

onnected networks with either positive and negative weights. 

The different architecture of anatomical and functional networks

ight hamper topological analysis aimed at investigating their rela-

ionship, biasing the results. For this reason, after the reconstruction

f anatomical brain networks, we converted these sparse matrices into

tructural correlation matrices by computing the Pearson’s correlation

etween each pair of rows, as in ( Amico and Goñi, 2018 ). In this way,

he anatomical edge weights were restricted to the interval [−1 , 1] and

he structural matrices were comparable to the functional ones. This

s desirable in light of the construction of the multi-modal multi-layer

etwork. 

Note that SC and FC are two different objects and in principle one

an transform any of the two to accommodate the topology of the other.

e intentionally manipulated the SC matrices in agreement with the

tate-of-the-art literature on structure-function relationship, where bio-

hysical, communication or statistical models operate on structural con-

ectivity to find correlations with functional connectivity ( Suárez et al.,

020 ). 

ulti-modal modularity optimization through traditional multi-layer models

The main objective of this work was to study the relationship be-

ween functional and structural connectivity from the perspective of

heir shared and unique modular structure. For this sake, one possibil-

ty is to recover communities of the brain networks through community

etection ( Fortunato, 2010 ), employing an algorithm based on modular-

ty optimization. Modularity ( 𝑄 ) ( Girvan and Newman, 2002; Newman,

012; Newman and Girvan, 2004 ) is a global quality function that esti-

ates how strongly communities are internally connected with respect

o a chance level, so that optimizing 𝑄 results in the detection of assor-

ative communities, i.e. groups of nodes that are internally dense and

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/enhanced/neurodata.html
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Fig. 1. Schematic representation of the extended multi-layer modularity optimization. (a) Conventional approach. Single-layer networks are aligned over the 

main diagonal of a square matrix of dimension [number of nodes × number of layers]. Modules are found by optimizing the modularity function on this network 

in which each node is connected to itself across layers through the resolution parameter 𝜔 . (b) Extended approach. Functional and structural connectivity matrices 

of each subjects are aligned over the diagonal of a square matrix sized [number of nodes × number of subjects × 2 (type of connectivity)]. Modularity optimization 

is run on this network, considering each node connected to itself within modality and across subjects through 𝜔 , and between type of connectivity through 𝜂. (c) 

Schematic representation of the methods used to investigate the relationship between structural and functional modular structure. For each subject and point in the 

parameter space identified by 𝛾 (spatial resolution parameter), 𝜔 and 𝜂, we obtain a partition of structural and functional networks into modules (left), on which we 

can compute the nodal entropy. By averaging across subjects we obtain an entropy matrix 𝐻 𝑠𝑓 of dimension 𝑁 ×𝑁 𝑝𝑎𝑟 (nodes × combinations of parameters) (right) 

that we can decompose into principal components to identify recurrent structural-functional relationships in the parameter space. 
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xternally sparse. 𝑄 is defined as follows: 

 ( 𝛾) = 

∑

𝑖𝑗 

[ 𝑊 𝑖𝑗 − 𝛾𝑃 𝑖𝑗 ] 𝛿( 𝜎𝑖 , 𝜎𝑗 ) . (1)

here 𝑊 𝑖𝑗 and 𝑃 𝑖𝑗 are the actual and expected weights of the link con-

ecting nodes 𝑖 and 𝑗. The variable 𝜎𝑖 ∈ {1 , 𝐾} indicates to which cluster

ode 𝑖 belongs, and 𝛿( 𝑥, 𝑦 ) is equal to 1 if 𝑥 = 𝑦 and 0 otherwise. The pa-

ameter 𝛾 represents a spatial resolution weight that scales the influence

f the null model, affecting the number and size of modules recovered.

sing high 𝛾 values results in many small communities and vice-versa. 

A multi-layer version of 𝑄 has been introduced to detect commu-

ities in multi-layer networks ( Mucha et al., 2010 ), where layers cor-

espond to estimates of the same network at different points in time,

ndividuals, or connection modalities. The multi-layer analog of 𝑄 is

efined as: 

 ( 𝛾, 𝜔 ) = 

∑

𝑖𝑗𝑟𝑡 

[( 𝑊 𝑖𝑗𝑟 − 𝛾𝑃 𝑖𝑗𝑟 ) 𝛿𝑟𝑡 + 𝜔𝛿𝑖𝑗 ] 𝛿( 𝜎𝑖𝑟 , 𝜎𝑗𝑡 ) . (2)

odes are linked to themselves across layers through the resolution pa-

ameter 𝜔 ( Fig. 1 a). Its value affects the homogeneity of communities

cross layers (indicated through 𝑟 and 𝑡 ), in a way that small 𝜔 values

mphasize layer-specific modular structure, while big 𝜔 values point out

ommunities shared across layers ( Puxeddu et al., 2019 ). The optimiza-

ion of 𝑄 ( 𝛾, 𝜔 ) returns, for each layer, a partition of the network into as-

ortative communities, whose dimensions and consistency across layers

epend on two parameters of spatial and a cross-layers resolution. Ap-

lying multi-layer modularity optimization, instead of the single-layer

ne to each network, is generally convenient; the multi-layer approach

s more resistant to noise ( Puxeddu et al., 2021a ) and returns commu-
3 
ity labels that are coherent across layers, so that one can easily track

heir evolution. 

Historically, applications of this method have been, almost exclu-

ively, to time-varying estimates of functional connectivity ( Bassett

t al., 2011; Betzel et al., 2017; Braun et al., 2015 ). However, this multi-

ayer approach can be also used to link structural and functional mod-

lar organization. Multiple single-subject SC and FC matrices from the

KI can be averaged across subjects to form group representative net-

orks. These, in turn, can be concatenated in a two-layers modular-

ty matrix of dimension 𝑁 ×𝑀𝑜𝑑𝑎𝑙𝑖𝑡𝑖𝑒𝑠 (number of nodes × connection

odality: 100 × 2) on which modularity optimization can be iterated

ith different combination of 𝛾 and 𝜔 . In this case, 𝛾 would impact the

imension of the communities, while 𝜔 their homogeneity between SC

nd FC. 

.2. Multi-modal and multi-subject modularity optimization 

In this work, we propose an extension of multi-layer modularity

ramework, formulated in order to handle information about different

ubjects and connection modality (SC or FC) simultaneously. Specif-

cally, we allow the inter-layer coupling parameter 𝜔 introduced in

q. 2 to adopt different values when linking subjects and modality. Thus,

e could assume that, in addition to the spatial resolution parameter 𝛾,

e simultaneously consider two inter-layer resolution parameters, 𝜔 and

, that couple each node 𝑖 with itself across subjects (indicated with 𝑟

nd 𝑡 ) and modalities (indicated with 𝑓 and 𝑠 ) respectively. A schematic

f this coupling scheme is reported in Fig. 1 b, while its expression is
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eported in Eq. 3 : 

 ( 𝛾, 𝜔, 𝜂) = 

∑

𝑖𝑗𝑓𝑠𝑟𝑡 

[
( 𝑊 𝑖𝑗𝑓𝑟 − 𝛾𝑃 𝑖𝑗𝑓𝑟 ) 𝛿𝑟𝑡 𝛿𝑓𝑠 + …𝜔𝛿𝑖𝑗 𝛿𝑓𝑠 

+ 𝜂𝛿𝑖𝑗 (1 − 𝛿𝑓𝑠 ) 
]
𝛿( 𝜎𝑖𝑟𝑓 , 𝜎𝑗𝑡𝑠 ) . (3) 

Here, 𝜔 , which we refer to as the subject resolution parameter , con-

rols the homogeneity of the communities across all the participants,

hile 𝜂, the modality resolution parameter , regulates the coupling of the

artitions between FC and SC networks within each participant. The 𝜂

arameter operates in a way similar to 𝜔 , so that for increasing 𝜂 values

e obtain structural and functional partitions that are increasingly cou-

led. Thus, setting low 𝜂 values would lead to partitions that highlight

eatures that are unique to structure and function, while larger 𝜂 values

ould correspond to features that are shared. 

We built a multi-layer network as shown in Fig. 1 b, aligning along

he main diagonal anatomical and functional modularity matrices of

he 123 healthy adult subjects from the NKI dataset. We obtained a

quare matrix of dimension 𝑁𝑆 ×𝑁 ×𝑀 (number of subjects × num-

er of nodes × connection modality: 123 × 100 × 2 = 24600 ). By optimiz-

ng 𝑄 ( 𝛾, 𝜔, 𝜂) we partitioned nodes in single networks (the individual

ayers) into modules. We ran the modularity optimization varying the

hree resolution parameters in the range [ 𝑠 min , 1 ], with 𝑠 min = 2 . 12 − 10 −6 
ndicating the minimum weight of the SC matrices. In this range we con-

idered 50 equally distanced values, so that we obtained an ensemble of

25,000 partitions ( 50 × 50 × 50 ) for each subject and type of connectiv-

ty. We ran the optimization employing the openly-available genlouvain

ackage ( http://netwiki.amath.unc.edu/GenLouvain/GenLouvain ), im-

lemented in Matlab ( Jutla et al., 2011 ). As in the classic multi-layer

ersion, the algorithm returns as an output a partition of each network-

ayer into modules. These partitions are encoded as vectors of dimension

, where each entry represents the allegiance of node 𝑖 to module 𝑘 .

hus, in our extended model, for each combination of the resolution pa-

ameters { 𝛾, 𝜔, 𝜂} we obtained 𝑁 𝑆 ×𝑀 partitions under the form of 𝑁-

imensional vectors. A schematic of this output is reported in Fig. 1 (c).

When running multi-layer modularity, the choice of the null model

 𝑖𝑗𝑟𝑓 is crucial. There exist many possible definitions of null models, and

e adopt the approach to set 𝑃 𝑖𝑗𝑟𝑓 = 1 for all 𝑖, 𝑗, 𝑠, 𝑓 . This is referred to

s uniform null model , and it has been shown to be a good model to deal

ith correlation matrices ( Bazzi et al., 2016; Traag et al., 2011 ), result-

ng in communities with well-known topographic features. Since func-

ional networks are rendered as temporal correlation matrices, and we

onverted anatomical networks into structural correlation matrices, we

ould use the uniform null model in all the network’s layers. As for the

arameter 𝜔 , instead, it can be considered in two configurations: (i) all-

o-all, meaning that nodes are linked to themselves through 𝜔 across all

he layers (used if layers represent categorical variables); (ii) temporal,

onnecting nodes only between consecutive layers (used in time-varying

etworks). In this case, layers connected through 𝜔 represent different

ubjects, so that we used the first configuration. 

Lastly, we want to emphasize that the transformation applied to

C networks is fundamental for this analysis and in general for those

nalysis aimed at comparing SC and FC topological organization. If we

ad preserved SC networks in the form of a sparse positive matrix with

eights possibly much higher than 1 (i.e., maximum weight reachable in

C networks), the community detection process would have been biased:

epending it on the weights of the matrices, it would have found mod-

les reflecting almost exclusively the anatomical modular organization.

oreover, this transformation allowed us to use the same mathematical

nstruments (i.e., the same spatial null model in the optimization) on

oth matrices. 

nalysis of the communities 

reliminary statistics on the communities 

Through the multi-layer modularity maximization, we obtained a

oint partition of anatomical and functional brain networks into nodal
4 
odules for each subject and for each combination of the resolution pa-

ameters. A widespread and easy approach is to focus on specific and

xed values of resolution parameters. Instead, we explored solutions

ver a range of parameters values, seconding the multi-scale organi-

ation of the brain networks ( Betzel and Bassett, 2017 ). Specifically,

e assessed the modular structure by tuning the resolution parameters

n the range [ 𝑠 min , 1] sampled with 50 values, obtaining 125,000 parti-

ions of the multi-layer networks for every subject’s SC and FC matrix.

his corresponds to an ensemble of 250,000 partitions for each subject

 125 , 000 × 2 ). Within this broad set of solutions, however, we restricted

urther investigation to a narrower subset, focusing on parameter combi-

ations that result non-trivial partitions. Criteria for selection included:

1. Number of clusters ( 𝑁𝐶). We considered partitions with a number

of modules falling in the range [5, 20]. Given that N = 100, these

modules will be made of 20 to 5 nodes on average. This choice al-

lowed us for a multi-scale analysis where we explored a large portion

of the spatial resolution spectrum, from very fine to coarse parti-

tions, while automatically rejecting trivial ones, like singleton parti-

tions (i.e. partitions made of 1 node), or 2-modules partitions (which

merely partition the hemispheres). We excluded combinations of res-

olution parameters that produced both structural and functional par-

titions with an average number of modules outside this range. 

2. Variability among subjects. We discarded partitions in which either

functional or structural community structure was identical across

all the subjects, as many studies demonstrate that the patterns of

brain connectivity are subject-specific. We quantified the variability

among subjects of node’s assignment through the normalized com-

munity entropy: 

ℎ 𝑖 = − 

1 
log 2 ( 𝐾) 

𝐾 ∑

𝑘 =1 
𝑝 𝑖 ( 𝑘 ) log 2 ( 𝑝 𝑖 ( 𝑘 )) . (4)

where 𝑘 indicates the communities, and 𝑝 𝑖 ( 𝑘 ) is the fraction of sub-

jects in which node 𝑖 belong to community 𝑘 . By dividing for log 2 ( 𝐾)
we normalized this measure in the range [0 , 1] , with 0 indicating

identical assignments and 1 maximal variability. By averaging ℎ 𝑖 for

all the nodes, we obtained 𝐻 = 

1 
𝑁 

∑𝑁 

𝑖 =1 ℎ 𝑖 , a measure of the variabil-

ity of the entire partition across subjects, within each type of con-

nectivity. We ignored resolution parameters providing 𝐻 = 0 across

subjects. 

Based on these criteria, we considered 𝑁 𝑝𝑎𝑟 = 3732 combinations of

 𝛾, 𝜔, 𝜂} (out of the total 125,000), in the ranges 𝛾 ∈ [0 . 02 , 0 . 4] , 𝜔 ∈
2 . 12 − 10 −6 , 0 . 16] , 𝜂 ∈ [2 . 1210 −6 , 1] . We based all the following analysis

n this sample of partitions. 

odes of variability across modality and across subjects 

In order to analyze the variability of communities across acquisi-

ion modalities, we computed the community entropy ( Eq. 4 ) between

tructural and functional partitions, which returns the variability of each

odes assignment to a module in the two modalities. The precise entropy

alues depend on the specific combination of the resolution parameters

 𝛾, 𝜔, 𝜂} . Through Principal Component Analysis (PCA) we aimed to in-

pect the parameter space and see if there existed patterns of variability

hat are recurrent inside this space. Thus, for each point in the parameter

pace (identified by different combinations of { 𝛾, 𝜔, 𝜂} ), we computed

he entropy between partitions coming from functional and structural

etworks, and we averaged this value across subjects. We aligned the

esulting vectors in a matrix 𝐻 𝑠𝑓 of dimension 𝑁 ×𝑁 𝑝𝑎𝑟 , and we sub-

ected it to Singular Value Decomposition (SVD). SVD decomposes the

atrix 𝐻 𝑠𝑓 into singular vectors 𝑈 𝑠𝑓 ∈ [ 𝑁 ×𝑁] and 𝑉 𝑠𝑓 ∈ [ 𝑁 𝑝𝑎𝑟 ×𝑁] ,
nd singular values Σ𝑠𝑓 ∈ [ 𝑁 𝑝𝑎𝑟 ×𝑁] , so that: 

 𝑠𝑓 = 𝑈 𝑠𝑓 Σ𝑠𝑓 𝑉 𝑇 𝑠𝑓 . (5)

he matrices 𝑈 𝑠𝑓 and 𝑉 𝑠𝑓 are orthonormal by definition and contain the

rincipal component scores and coefficients, respectively. The columns

f 𝑈 𝑠𝑓 can be interpreted as the modes of variability between SC and

http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
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C partitions, while the values in the rows in 𝑉 𝑠𝑓 indicate where these

odes are likely to appear in the parameter space. The diagonal ele-

ents of Σ𝑠𝑓 contain the information about the covariance with which

ach component explains the variability across SC and FC. These pas-

ages have been outlined in Fig. 1 (c). 

Limiting the study to the components explaining most of the vari-

nce between SC-FC community entropy, we identified the points in the

arameter space where these components are most strongly expressed.

n this way, we divided the parameter space into non-overlapping re-

ions that correspond to distinct patterns of coupling between structural

nd functional modules. Within each one of these regions we extracted

epresentative partitions for both structural and functional networks,

y computing the Variation of Information (VI) ( Meil, 2007 ), an infor-

ation theoretic measure of distance between pairs of partitions, and

ecorded the centroid, the partition least distant from all other parti-

ions (i.e. with lowest VI). A schematic representation of this analysis

an be found in Supplementary Material, Figure S2. 

We performed a similar analysis to identify modes of variabil-

ty across subjects, focusing our analyses on inter-subject variation of

natomical or functional modules, independently. We built a matrix

 𝑠𝑏𝑗 of dimension 𝑁 ×𝑁 𝑟𝑒𝑝 containing in each column the vector of

he entropy ℎ computed among subjects within modality each modality

structural/functional connectivity). We executed the SVD to decom-

ose 𝐻 𝑠𝑏𝑗 in the singular vectors 𝑈 𝑠𝑏𝑗 ∈ [ 𝑁 ×𝑁] and 𝑉 𝑠𝑏𝑗 ∈ [ 𝑁 𝑝𝑎𝑟 ×𝑁] ,
nd singular values Σ𝑠𝑏𝑗 ∈ [ 𝑁 𝑝𝑎𝑟 ×𝑁] : 

 𝑠𝑏𝑗 = 𝑈 𝑠𝑏𝑗 Σ𝑠𝑏𝑗 𝑉 𝑇 𝑠𝑏𝑗 . (6)

e did this for both structural and functional partitions. Again, the ma-

rices 𝑈 𝑠𝑏𝑗 and 𝑉 𝑠𝑏𝑗 are orthonormal and contain the principal compo-

ent scores and coefficients. Here, we interpret the columns of 𝑈 𝑠𝑏𝑗 as

he modes of variability of the partitions across subjects. The values

n the rows in 𝑉 𝑠𝑏𝑗 indicate where these modes are likely to appear in

he parameters space, while the diagonal elements of Σ𝑠𝑏𝑗 contain the

ariance with which each component explains the variability across sub-

ects. 

. Results 

The brain’s modular structure reveals groups of brain regions that

re functionally or anatomically related. Identifying this architecture at

ifferent scales can lead to important clinical and behavioral insights.

n this work, we introduced an extension of the multi-layer modularity

ramework, developed to analyze multi-subject multi-modal datasets.

y concatenating structural and functional connectivity matrices of dif-

erent subjects and treating them as coupled layers of a multi-layer net-

ork, our approach is meant to simultaneously map brain communities

nto subjects and type of connectivity at different scales. Then, the com-

unities obtained in such a way will be analyzed with standard indices,

ike variation of information (VI) and entropy (H), to assess their similar-

ty across modality and/or subjects. We will also present a PCA analysis

eant to identify scales in which the structure-function relationship has

 stable pattern. 

In the following sections, we illustrate the results of the application

f our new framework to anatomical and functional networks obtained

rom healthy adult subjects of the NKI dataset. We will first comment on

he results in light of the traditional multi-layer framework and then, as

 validation, we will replicate the analysis on an independent dataset. 

.1. Multi-modal modular structure with conventional multi-layer 

odularity optimization 

As a first step, we show how topological properties of anatomical and

unctional networks can be linked through the conventional multi-layer

odularity optimization framework ( Fig. 1 a). To this end, we extracted

epresentative anatomical and functional group-averaged networks for
5 
he NKI dataset by averaging SC and FC matrices across the 123 sub-

ects. Hence, we built a two-layers modularity matrix and we iterated

he conventional multi-layer modularity optimization ( Eq. 2 ) 100 times

ith combinations of 𝛾 and 𝜔 whose values span the range [ 𝑠 min , 1] .
or each combination of 𝛾 and 𝜔 , the algorithm returned a partition

f the two group-averaged networks into modules. Then, we retained

nly non-trivial partitions with non-singleton communities, which led

o consider 𝛾 in the range [ 𝑠 min , 0 . 83] . Here, we comment how the two

esolution parameters affect the optimization’s output in terms of cou-

ling between anatomical and functional modules and how we can study

heir relationship at different scales. 

By computing the cross-layer VI and nodal entropy (that are the VI

nd entropy between FC and SC partitions), and averaging across the

00 iterations, we show how the resolution parameter 𝜔 controls the

omogeneity of modules across layers, and thus, in our case, connec-

ion modalities. These indices measure how much nodes’ assignments

o a community vary at the node level (entropy) and globally (VI). As

xpected, entropy values decreased monotonically with 𝜔 ( Fig. 2 (a)),

hich means that higher 𝜔 -values leads to high coupling between FC

nd SC partitions. Analogously, VI decreased monotonically with 𝜔

 Fig. 2 (b), blue line), meaning that also globally FC and SC partitions

end to get closer one another, until 𝜔 > 0 . 7 , at which point the parti-

ions are identical ( 𝑉 𝐼 = 0 , 𝐻 𝑠𝑓 = 0 ). Thus, by tuning 𝜔 in its range, we

ere able to explore different levels of structure-function relationships,

ighlighting modular configurations that are distinctive of the connec-

ion modality, or shared between them. 

By definition, 𝛾 affects the size of the detected communities. How-

ver, in Fig. 2 (a), one can see how 𝛾-values also impact the cross-layer

omogeneity, in a proportional way (even if to lesser extent with respect

o 𝜔 , as shown by the marginal plots). This is trivially explained by the

rogressive diminishing of the dimension of the modules. In fact, any

wo partitions with a number of clusters close to the number of nodes

re intuitively more similar. Also the lowest 𝛾-values brought to more

oupled partitions, and for a similar reason (few bigger clusters are more

ikely to comprehend the same nodes). Further statistics and plots re-

arding the effect of the spatial resolution parameter on the dimension

f the discovered communities have been reported in Supplementary

aterial, Figure S4. 

Focusing on a specific 𝛾-value ( 𝛾 = 0 . 16 ), we reported in Fig. 2 (d) an

xample of how modules in SC and FC networks gradually reconfigure,

ncreasing 𝜔 , to meet a higher overlap. The most evident change, by eye,

appens in the areas covering the primary motor cortex. These belong

o hemispheric-specific clusters in the SC partitions for low 𝜔 (as ex-

ected, since structural connectivity favors short-distance connections),

ut then increasing 𝜔 they start participating in the same modules, as

n FC partitions. Unpacking the nodal entropy we could better observe

hese local properties. For instance, for every brain system we can keep

rack of the entropy across 𝜔 ( Fig. 2 (c)) and see at which rate they recon-

gure. If we average across 𝜔 then ( Fig. 2 (e)), we could have an estimate

f how likely different brain system change their modules assignment

o increase the overlap between structural and functional partitions. For

nstance, we found that ventral attention network present high entropy

ntil 𝜔 = 0 . 7 (where FC and SC partitions become identical), while vi-

ual and temporal areas participate in modules that are overlapped in

C and FC partitions even before 𝜔 = 0 . 7 . Note that in Fig. 2 (c,d) we

howed modular structure and nodal entropy up to 𝜔 = 0 . 7 . We excluded

he possibility of a perfect alignment between structural and functional

odular organization, given the different nature of the signals and the

act that structural modules underpin a static wiring of anatomical path-

ays, while functional modules are shaped by dynamic statistical rela-

ionships between brain areas. 

In summary, we showed how conventional multi-layer modularity

ptimization can be used to investigate the coupling between structural

nd functional topological properties. However, applied in this manner,

his approach can only operate on averaged brain network data, ignoring

ingle-subject’s information. Indeed, this model is able to track commu-
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Fig. 2. Conventional multi-layer modularity optimization to couple structural and functional communities in the group-average networks. (a) Entropy 

between structural and functional partitions varying the resolution parameters 𝜔 and 𝛾. (b) Variation of Information (VI) between SC and FC partitions across 𝜔 . (c) 

Node’s entropy between SC and FC partitions in the 𝜔 -range ( 𝛾 = 0 . 16 ). (d) Projection on the brain cortex of the structural and functional partitions obtained with 

multi-layer modularity optimization with 𝛾 = 0 . 16 and increasing the inter-layer coupling parameter 𝜔 . The different communities are rendered through a color code. 

(e) Entropy between FC and SC partitions ( 𝛾 = 0 . 16 ) averaged across 𝜔 projected in the brain surface. 
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ities along only one dimension, which we can choose to be time (e.g. as

n ( Bassett et al., 2011 )), subjects (e.g. as in ( Betzel et al., 2019 )), or con-

ection modality (as shown here). In the next section we illustrate how

he extension that we propose overcomes this limit. For sake of clarity,

ote that in the just presented conventional multi-layer framework the

arameter 𝜔 couples SC and FC networks. In our extension instead, SC

nd FC will be linked by a new parameter 𝜂, while 𝜔 will bridge matrices

cross subjects. This is well explicated in Methods, Eq. 2 and Eq. 3 . 

.2. Detection of multi-subject multi-modal modular structure 

In the previous section we illustrated how the multi-layer frame-

ork could be applied to multi-modal network data, focusing on group-

veraged networks. Here, we show how the extended multi-layer mod-

larity optimization ( Eq. 3 ) can detect modules in structural and func-

ional networks simultaneously from the 123 subjects of the NKI dataset.

he modularity optimization over our extended model in fact returned

 partition of each network layer into modules. For each combination

f { 𝛾, 𝜔, 𝜂} and subject we obtained both the anatomical and func-

ional modular structure encoded in N-dimensional vectors that asso-

iate nodes to labeled modules. This time, the output of the optimiza-

ion algorithm depends on three resolution parameters { 𝛾, 𝜔, 𝜂} , that we

aried in the range [ 𝑠 min , 1] . One challenge is that some of the parame-

ers will yield uninformative partitions. We illustrate how we excluded

nwanted partitions and, once restricted the space of investigation, how

 𝛾, 𝜔, 𝜂} -values affect the number of modules and their coupling across

ubjects and connection modality. 

To retain only informative partitions, we studied how the spatial

nd cross-subject resolution parameters, 𝛾 and 𝜔 , impact the statistics of

he communities and we restricted their range consequently. According

o our formulation of the multi-layer framework, the spatial resolution

arameter, 𝛾, influences the number of communities, while 𝜔 impacts

he homogeneity of the partitions across subjects. Here, we computed

he optimization while tuning the parameters in the range [ 𝑠 min , 1] , and

e observed how the number of clusters and community entropy are

istributed in the parameter space. Results are reported in the Supple-

entary Material, Figure S3. As expected, we found that setting 𝛾 to
6 
igh (low) values leads to many small (few big) clusters, while increas-

ng 𝜔 leads to lower variability of the modular structure across subjects

Figure S3(f-i)). We selected non-singleton partitions with 5–20 commu-

ities, where nodes’ assignment to the communities differs for at least

ne subject (i.e. entropy within modality greater than 0). This procedure

arrowed the 𝛾 and 𝜔 ranges down, into a non-rectangular parameter

pace limited by 𝛾 ∈ [0 . 02 , 0 . 4] , 𝜔 ∈ [2 . 1210 −6 , 0 . 16] , where anatomical

nd functional partitions are respectively made of 𝑁𝐶 𝑠 = 16 ± 9 . 8 and

𝐶 𝑓 = 8 ± 4 . 8 clusters. Each combination of the parameters in this sub-

pace corresponds to an informative partition. As a demonstration, we

omputed the distance of all the partitions from a set of canonical brain

ystems ( Thomas Yeo et al., 2011 ), also referred to as intrinsic connec-

ivity networks ( ICNs ), observing that the minimum distance falls in the

elected subspace (see Supplementary Material, Figure S5). 

Once we identified a sub-space of meaningful partitions through the

arameters 𝛾 and 𝜔 , we could observe how the 𝜂 parameter enables to

xplore different levels of coupling between structural and functional

odular structure. In our model, 𝜂 determines the extent to which iden-

ified communities persist across types of connectivity (note that in the

onventional case presented in the previous section this role was cov-

red by 𝜔 ). The hypothesis is that there would be significant differences

mong structural and functional partitions when the coupling parame-

er is low, but the partitions would converge increasing 𝜂’s value. To test

his hypothesis we computed the VI between structural and functional

artitions for each 𝜂-value, averaging in the restricted { 𝛾, 𝜔 } ranges.

he results, reported in Fig. 3 (d), showed a decreasing trend of VI for

ncreasing 𝜂-values (blue line). Low 𝜂-values yield weak coupling be-

ween FC and SC partitions, while high 𝜂-values yield strong coupling

etween the same partitions. This supports the hypothesis that the brain

odular structure differs between types of connectivity, but that adjust-

ng 𝜂 we can encourage the algorithm to find features that are unique

o function and structure, as well as shared features. Note that this is

nalogous to what we found using the connection modality as layer-

imension in the group-averaged conventional model ( Fig. 2 (b)). The

nly difference is the range of VI-values, which is shifted down in the

onventional case. This might be an effect of the group-average, that

eads to flatten network’s properties over the sample. 
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Fig. 3. Extended multi-layer modularity optimization to couple structural and functional communities in multi-subject datasets. (a) Entropy between 

structural and functional partitions varying the three resolution parameters { 𝛾, 𝜔, 𝜂} projected in the parameter space (averaged across subjects). (b) Projection of 

the entropy in the 2-dimensional space constituted by 𝜂 and 𝛾 (average across 𝜔 ). (c) Projection of the entropy in the 2-dimensional space constituted by 𝜂 and 𝜔 

(average across 𝛾). (d) Distance between SC and FC partitions across the 𝜂-range (blue line) in terms of Variation of Information, having averaged across 𝛾 and 𝜔 ; mean 

(dark line) and confidence interval (shaded area) are shown. The red and green plots report the distance between functional and structural partitions obtained with 

this extended model and those in the group-average analysis. (e) Projection on the brain cortex of the consensus partitions obtained with the extended multi-layer 

modularity optimization for increasing 𝜂 ( 𝛾 = 0 . 12; 𝜔 = 0 . 06 ). Different communities are rendered through a color code. (f) Node-wise entropy between SC and FC 

partitions (averaged across subjects) in the 𝜂-range ( 𝛾 = 0 . 12; 𝜔 = 0 . 06 ), and its average projected on the brain surface (g). 
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Furthermore, in Fig. 3 (d), we showed the VI computed between the

artitions obtained with the new model and those from the previous

roup-average case (green and red lines). In this case the VI tends to

ncrease with 𝜂, meaning that the higher 𝜂 is, the more that the multi-

ayer partitions diverge from the traditional ones. However, these VI-

alues remain low ( < 0 . 2 ) along the 𝜂-range, so that increasing 𝜂 affects

he coupling between SC and FC partition to a greater extent in the new

ramework, than the divergence of such partitions with the traditional

nes. 

The parameters 𝛾 and 𝜔 , are responsible for modulating the num-

er of clusters and homogeneity of the partitions across subjects (Fig-

re S3). We showed that the coupling between structural and functional

odules is analogously governed by 𝜂. A further demonstration of this

s in Fig. 3 (a-c), where we reported the normalized nodal entropy (H)

etween SC and FC partitions, first calculated within subjects and then

veraged across all subjects, in the restricted parameter space. As ex-

ected, we found that H varies monotonically only with 𝜂, decreasing
7 
hen such parameter increases. Overall, we observed that H varies all

ver the parameter space and it shows its lowest values, meaning high

oupling between FC and SC partitions, when all the parameters { 𝛾, 𝜔𝜂}
re set to high values. 

Our multi-subject and multi-modal modularity is meant to detect

odules of different sizes and more or less consistent across subjects and

ypes of connectivity. However, in some cases, instead of observing how

lobal properties of the modules vary across the whole parameter space,

ne may want to investigate a more focused set of partitions and provide

 more detailed description of the community structure. Our algorithm

llows for this possibility. For instance, in Fig. 3 (e-g), we isolated the

tructural and functional partitions obtained with 𝛾 = 0 . 12 (meaning on

verage 𝑁𝐶 𝑠 = 13 . 9 ± 1 . 7 and 𝑁𝐶 𝑓 = 7 . 3 ± 1 . 9 ) and 𝜔 = 0 . 06 (ensuring

ood consistency across subjects). We observed how in this specific case

he partitions become progressively coupled across 𝜂 ( Fig. 3 (e)). To fur-

her explore structure-function relationship, we can also look at which

rain systems are more prone to participate in similar communities in
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C and FC networks for increasing 𝜂-values, and which instead remain

odality-specific, as we did in the previous section ( Fig. 3 (f)). In the

ubspace defined by { 𝛾 = 0 . 12 , 𝜔 = 0 . 06} - arbitrarily chosen - we ob-

erved that the DMN together with the temporal, limbic and control

ystems belong to the first category, while the somato-motor area, DAN

nd salience and ventral attention networks belong to the second one

 Fig. 3 (g)). The same analysis can be used to explore communities at

oarser or finer scales, meaning focusing on lower or higher 𝛾-values

see Figure S6). Furthermore, in a similar way, one can also explore

ow either structural or functional modular organization reconfigures

cross subjects (see Figure S10). 

Here, we have illustrated the community structure that can be ob-

ained using multi-layer multi-modal modularity maximization. Its out-

ut depends on three resolution parameters whose value impacts mod-

les size as well as variability across subjects and connection modality.

redefined heuristic about the output community structure allowed us

o focus on parameter ranges where the character of detected communi-

ies is consistent with previous reports, while still capturing meaningful

nter-subject and inter-modality variability. We also showed how our

odel allows for the coupling between structural and functional parti-

ions to be systematically adjusted. A more detailed description of the

odular structure in the parameter space will follow. 

.3. Modes of variability between connection modalities 

In the previous section we identified a subset of parameters where

artitions could be considered meaningful for imaging-based analyses.

nside this subspace, we showed in which way the three resolution pa-

ameters { 𝛾, 𝜔, 𝜂} affect the scale of the partitions and the magnitude

f their variability between types of connectivity and among subjects.

ow, we want to discover if there exist recurrent patterns of inter-

odality variability which are encoded in the parameters subspace in a

on-random manner. In fact, knowing how the SC-FC coupling depends

n the scales of the communities is important in more pragmatic studies,
ig. 4. Principal component analysis (PCA) for the detection of modes of variab

his figure correspond to the first five components of the decomposition. (a-e): proje

arameters 𝛾, 𝜔, 𝜂. (f-j): projection on the cortex surface of the first five PC scores. (

omponent, brain areas colored with red present community assignment highly varia

n the space of parameter identified by red dots. Blue-colored brain areas instead, i

arameter space. 

8 
or instance in clinical-oriented studies, where we might want to am-

lify individual-specific features of the SC-FC relations (for example to

nd correlations with a clinical index), or features of such relations that

re shared across a cohort. For this purpose, we stored in a 100 × 3732
 𝑁 ×𝑁 𝑝𝑎𝑟 ) matrix the vectors containing the normalized nodal entropy

cross modalities (one vector for each point in the sub-sampled param-

ter space) and we performed the Principal Component Analysis (PCA)

n this matrix. Through the PCA we obtained 99 principal component

cores (in the form of orthonormal vectors of length equal to the number

f nodes), and the relative coefficients, informative of their contribution

n each of the 3732 rows of the data. Thus, we identified the modes of

ariability projecting the scores and the coefficients on the cortex sur-

ace and on the parameter space, respectively. 

In Fig. 4 we reported the results relative to the first five components,

hat, out of the 99, explain most of the variance of the SC-FC community

oupling (12.53 % , 9.67 % , 7.77 % , 6.17 % , 5.69 % respectively), while the

emaining components each explains less than 5% of the variance (see

upplementary Figure S7). 

Globally the first five 𝑃 𝐶 𝑠 occupied different zones in the three-

imensional parameter space ( Fig. 4 (a-e)). 𝑃 𝐶 1 was expressed at high

and 𝛾 values, corresponding to a subspace in which inter-modality

ariability was low and the brain is partitioned into fine modular struc-

ure, i.e. many small modules. Projecting 𝑃 𝐶 1 scores onto the cortex

howed that, in this region of the parameter space, the nodes whose

odule’s assignment differs most between FC and SC networks belong

o the Dorsal Attention Network (DAN), the Salience and Ventral Atten-

ion Network and the somatosensory and motor areas ( Fig. 4 (f,k)). On

he contrary, other regions like those from the Control, Default Mode

etwork (DMN), Limbic, and Temporal systems, showed higher con-

istency between the two connectivity measures within this subspace.

he other principal components were expressed in other regions of the

arameters space and showed different patterns of inter-modality vari-

bility, suggesting that patterns of variability of the SC and FC modular

tructure were resolution-dependent. For example, 𝑃 𝐶 coefficients as-
ility between structural and functional community structure. Columns of 

ction of the first five PC coefficients into the parameter space identified by the 

k-o): average within the functional systems of the first five PC scores. In each 

ble between functional and structural networks. These variations mostly occur 

dentify stable node’s community assignment in the relative blue points of the 
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umed high positive values in the subspace where 𝛾 and 𝜂 are low and

 is high, corresponding to networks parsed in few clusters, highly cou-

led across subjects and barely coupled between connection modality.

ere, the regions whose module assignments were more variable be-

ween FC and SC networks are those involved in the visual and temporal

ystems. The regions belonging to the somatosensory and motor systems

nstead, show higher consistency between modalities. In 𝑃 𝐶 4 coefficient

re more expressed at low 𝛾, and high 𝜔 and 𝜂, that is where partitions

resent few clusters, high correspondence among subjects and a good

evel of overlap between modalities. In this subspace the visual and so-

atomotor systems, together with the DAN and DMN, tend to maintain

he same modules allegiance in SC and FC networks, while the regions

ostly located in the temporal area are more likely to change module

assing from SC to FC networks. 

We hypothesized that these modes of entropy are non-randomly

tructured in the parameter space, but rather, they are robust to different

hoices that one must make in the building of a multi-modal network.

o prove that, we replicated an identical analysis on three differently

uilt multi-layer networks. In the first, we considered a finer parcella-

ion of the brain, made of 200 nodes. In the second, we run our extended

ulti-layer framework on the structural and functional networks from

nly one hemisphere (the left one). We perform this analysis to evaluate

he role of inter-hemispheric connections, which are generally stronger

n functional networks while more difficult to reconstruct in anatomical

etworks. In the last one, we built the multi-layer network transform-
ig. 5. Modes of variability and representative partitions. (a) Projection on the

f 𝛾, 𝜔, 𝜂, where the first five components are more expressed. Components are iden

ntropy between the 100 SC and FC partitions identified in panel (a). By averagin

nformation about the nodes whose assignment varies most within each component ( 𝑠

f the five subspace (c) we gained information about the variability of node’s assignm

een reported through spider plots. (d-h) For each component we selected the parti

epresentative partition among them, for both structural and functional networks, an

9 
ng the SC matrices through the Spearman correlation, instead of the

earson correlation. While by using the Pearson correlation we already

ddressed the main topological concerns (i.e., weight range and spar-

ity), a non linear type of correlation, like the Spearman’s, might better

andle other properties of the SC networks, like for instance the expo-

ential distribution of the weights. Statistically comparing the results of

he PCA, we observed that, in all the cases, there is a significant cor-

elation between the principal components scores of the different mod-

ls, which suggests that structure-function relationships are encoded in

he parameter space in a non-random fashion. These validations are re-

orted in section 10 of Supplementary Material. 

Once identified well-structured modes of entropy between struc-

ural and functional modular organization, one could ask how this large

mount of data could be treated. One solution we suggest in this sec-

ion is performing a consensus analysis within the sub-regions of the

arameter space identified by the principal components. Thus, a deeper

nalysis of the first five Principal Component is presented in Fig. 5 . First,

e reported in the parameter space, through different colors, the 100

oints corresponding to the right tail ( ≈ 2 . 5% of the values) of 𝑃 𝐶 coef-

cients, in order to better pinpoint the regions where the 𝑃 𝐶 were most

xpressed ( Fig. 5 (a)). Then, for each component, we only considered

he partitions corresponding to these points, to investigate which brain

reas show the highest variability in the modules’ allegiance between

natomical and functional networks, and across subjects ( Fig. 5 (b,c)).

oreover, for each set of partitions corresponding to the five 𝑃 𝐶, we
 parameter space of the 100 points, corresponding to different combinations 

tified through color code. For each component we computed the community 

g these values across subjects and within functional systems (b) we obtained 

𝑡𝑑 ∈ [0 . 02 , 0 . 35] ). Instead, by averaging across combinations of { 𝛾, 𝜔, 𝜂} of each 

ent across subjects, for each component ( 𝑠𝑡𝑑 ∈ [0 . 02 , 0 . 26] ). These results have 

tions corresponding to the points highlighted in panel (a) and we computed a 

d the agreement matrix (co-assignment probability of each pair of nodes). 
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lso reported the agreement matrix and a representative partition for

oth structural and functional networks ( Fig. 5 (d-h)). The agreement

atrix shows the probability that each pair of nodes belongs in the same

odule in the subspace identified by 𝑃 𝐶 𝑠 . 𝑃 𝐶 𝑠 were mostly expressed

n different zones of the parameter space and for each of them we could

bserve different values of community entropy within the ICNs or across

ubjects, as well as different agreement matrices and representative par-

itions. For instance, as we intuited before, 𝑃 𝐶 1 was mostly expressed at

ow 𝜔 , and mid-range 𝛾 and 𝜂. The partitions falling in this subspace pre-

ented a good overlap between structural and functional connectivity.

he brain regions whose module’s assignment was most variable belong

o the ventral attention network, the DAN and part of the somatomotor

rea, which, as one can observe in the representative partitions, were

oined together in the functional partition, while remaining separated

n the structural one. On the contrary, the highest level of inter-subject

ariability is observed in the brain areas underlying temporal nodes.

imilar observations, with different conclusions, can be done for the

ther four components. 

An analogous PCA analysis has been conducted to evaluate modes

f variability of the modular structure across subjects, in both cases of

tructural and functional connectivity, and it has been reported in the

upplementary Material (Figures S8 and dummyTXdummy-(S9). 

Taken together, these results suggest the existence of inter-modality

ariability patterns that are well structured in the parameter space. The

ay sub-systems are coupled between structural and functional connec-

ivity highly depends on the choice of the 𝛾, 𝜔 , 𝜂-values. In other words,

he same functional or cognitive system could participate in the same

odules in functional and structural networks, or not, according to the

opological scale of the partitions (tuned through 𝛾) or their consistency
ig. 6. Analysis of the Human Connectome Project dataset. (a-c) Representation

rom the PCA analysis performed on the HCP dataset. These components broadly co

eported in panels (d-f). (g) Tables reporting correlation coefficients for each pair of

orrelation coefficients non statistically significant have been reported in black. p-val

C partitions of the HCP averaged across 𝜂 ( 𝛾 = 0 . 10; 𝜔 = 0 . 02 ) and projected on the br

he obtained values of entropy across modalities are correlated across the two differe

10 
cross subjects (modulated by 𝜔 ). This information is crucial and has

o be borne in mind by a potential user, above all in contexts where

tructure-function relationships are linked to clinical or behavioral mea-

ures of the human brain. Such relationships would be dependent on the

hoice of 𝛾, 𝜔 and 𝜂, which in turn are set arbitrarily by the user. 

.4. Detecting multi-modal multi-subject modular structure in the Human 

onnectome Project dataset 

In order to validate the results of the study, we reproduced the anal-

sis on a subset of the Human Connectome Project dataset ( Van Es-

en et al., 2013 ). It comprises anatomical and functional connectivity

ata from 95 unrelated healthy adult subjects. 

After having built a multi-subject multi-modal network as in Fig. 1 b,

e ran multi-layer modularity optimization. Then, in order to assess

atterns of inter-modality variability, we performed PCA on the en-

ropy matrices obtained computing the node’s entropy between struc-

ural and functional partitions in each point of the parameter space given

y 𝛾, 𝜔, 𝜂. We reported in Fig. 6 (a-e) the projection on the brain surface

f the first three principal component’s coefficients, which explained

ost of the variance of the variability across modality ([12.99, 7.78,

.73] % respectively). 

The PCA analysis executed on the NKI and HCP datasets led to

omparable results in terms of patterns of entropy between connection

odality. To prove it, we looked for statistical correlations between

he scores of the first principal components of the two datasets. Re-

ults are reported in Fig. 6 (d-g). We found that the first components

f the two datasets, 𝑁𝐾𝐼 𝑃𝐶 1 and 𝐻𝐶𝑃 𝑃𝐶 1 , are positively correlated

 𝑝𝑣𝑎𝑙 = 0 . 03 , 𝑟 = 0 . 21 ). For both datasets, in the subspace defined by
 on the brain cortex of the coefficients of the first three components generated 

rrespond to those of the NKI dataset, as shown through the correlation maps 

 components. the pairs that we represented in panels (d-f) are bounded in red. 

ues have been corrected for multiple comparisons. (h) Entropy between FC and 

ain surface. This is the equivalent to Fig. 3 (g) for the HCP dataset. At this scale, 

nt datasets ( 𝑟 = 0 . 3 , 𝑝𝑣𝑎𝑙 = 0 . 003 ) (i). 
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hese components, the brain regions whose modules assignment differs

ost between structural and functional connectivity belonged to the

AN, the Salience and Ventral Attention networks, and the somatomo-

or area. At the same time, the DMN together with the Control Net-

ork and Temporal areas pertain to modules shared with SC and FC

atrices. Note that we have already commented on this for the NKI net-

orks in Fig. 4 (k). Here we are demonstrating the robustness of the

esults by validating them on an independent dataset. Other signifi-

ant correlations, even stronger, have been found between: 𝑁𝐾𝐼 𝑃𝐶 2 and

𝐶𝑃 𝑃𝐶 2 
( 𝑝𝑣𝑎𝑙 < 10 −3 , 𝑟 = 0 . 63 ); 𝑁𝐾 𝐼 𝑃𝐶 5 

and 𝐻𝐶 𝑃 𝑃𝐶 3 ( 𝑝𝑣𝑎𝑙 < 10 
−3 , 𝑟 =

 . 57 ). These three correlations have been proven significant also with a

on parametric spin test ( Alexander-Bloch et al., 2018 ), with which we

btained p-values equal to [0 . 0198 , 0 . 0002 , 0 . 0008] , respectively. 

We further illustrated the consistency of results across independent

atasets by focusing on the inter-modality variability at one specific

cale (see Fig. 6 (j,k))). We selected the partitions corresponding to

 𝛾 = 0 . 12 , 𝜔 = 0 . 06} for the NKI, and { 𝛾 = 0 . 10 , 𝜔 = 0 . 2} . Here, we ob-

erved low inter-subject variability and 7 modules for the functional

artitions ( 𝐶𝑁𝑓 𝑁𝐾𝐼 = 7 ± 1 . 9 , 𝐶𝑁𝑓 𝐻𝐶𝑃 = 6 ± 0 . 9 ) and 10 for the struc-

ural ones ( 𝐶𝑁𝑠 𝑁𝐾𝐼 = 13 ± 1 . 7 , 𝐶𝑁𝑠 𝐻𝐶𝑃 = 7 ± 0 . 6 ). At this scale, the

ystem-averaged values of inter-modality variability significantly cor-

elated in the two datasets ( 𝑟 = 0 . 3 , 𝑝𝑣𝑎𝑙 = 0 . 003 ). 
We replicated the analysis on a second dataset, the HCP, indepen-

ently acquired, but similar in terms of participants’ number and age.

he reported findings corroborated the results that we first obtained

ith the NKI dataset. Indeed, modes of inter-modality variability ap-

eared to be robust across datasets and confirmed the multi-scale orga-

ization of the human brain networks. 

. Discussion 

In this work, we explored how the modular structure of the hu-

an brain networks is organized across structural and functional con-

ectivity metrics. While most of the literature focuses on the compari-

on and prediction at the nodes and edge weights level ( Suárez et al.,

020 ), we investigated structure-function relationship at the mesoscale

evel. In doing this we proposed a novel multi-modal framework, de-

eloped on top of the widely-used multi-layer modular optimization

 Mucha et al., 2010 ), where structural and functional connectivity ma-

rices are stacked and linked by three resolution parameters { 𝛾, 𝜔, 𝜂} .
hrough this extension we detected the modules of the human brain

etworks across structural and functional connectivity and among sub-

ects, simultaneously. The three resolution parameters represent a lens

hrough which we could investigate the modular structure of the brain

etworks, zooming in and out towards organizational traits that are

nique or shared among connectivity modalities or subjects. Thus, we

xplored how modules are configured across spatial scales and at dif-

erent levels of coupling of the nodes across subjects and types of

onnectivity. 

.1. Relationships between structural and functional modular structure 

cross subjects 

The principal aim of this work was to characterize the community

rganization of brain networks across types of connectivity. Our re-

ults suggest that there is not a single way to describe the overlap

etween structural and functional modular organization. Rather, we

bserved that this overlap depends on the spatial resolution of mod-

les (controlled by the parameter 𝛾), but also on the inter-subject and

nter-modality resolution (regulated by the parameters 𝜔 and 𝜂, respec-

ively). Trivially, the strength of the inter-modality resolution ( 𝜂) was

roportional to the overlap between structural and functional modules.

s for the dependence on the spatial resolution ( 𝛾), previous studies

ave shown how brain networks display a multi-scale community or-

anization ( Betzel and Bassett, 2017 ). Therefore it is intuitive that the

elationship of this organization between different types of connectiv-
11 
ty will also be multi-scale. Specifically, we observed a higher SC-FC

odular coupling in finer partitions. Tuning the cross-subject resolution

 𝜔 ) instead, we found a higher coupling between structural and func-

ional partitions when considering low community variability across

ubjects. 

In this study, we presented criteria to narrow the parameter space

o the maximum possible number of combinations of parameters that

ield to non-trivial solutions, and analyzed the structure-function rela-

ionship within this large space. Future investigations, however, might

e focused on a narrower subspace from the beginning, basing on the

esearch question or hypothesis. For instance, one might want to high-

ight group-level features of the network organization and focus only

n high 𝜔 , or vice versa on low 𝜔 to identify subject-specific attributes

for example in clinical studies where the aim is usually to find relations

ith subject-level clinical outcomes). 

Through principal component analysis we divided the parameter

pace into regions where we identified modes of variability between

natomical and functional modules. We described in detail the structure-

unction relationship explained by the first five components, expressing

ost of the variance in the 𝑃 𝐶𝐴 . In this way, we went from observing

732 sets of structural and functional partitions, to the analysis of five

ecurrent cases. These first five components are located in the parameter

pace as follows: 𝑃 𝐶 1 high- 𝜂, low- 𝜔 , high- 𝛾; 𝑃 𝐶 2 low- 𝜂, low-to-high- 𝜔 ,

ow- 𝛾; 𝑃 𝐶 3 low- 𝛾, low- 𝜔 , high- 𝜂; 𝑃 𝐶 4 high- 𝜂, high- 𝜔 , low- 𝛾; 𝑃 𝐶 5 high-

, high- 𝜔 , low- 𝜂. These results confirmed that the structure-function

oupling, at the modular level, is mediated by the topological scale.

n the best possible condition from the SC-FC coupling point of view,

epresented by 𝑃 𝐶 1 , the regions whose community assignment varies

he most between modality are mainly associated to the ventral atten-

ion network. Interestingly, this might align with results in ( Vázquez-

odríguez et al., 2019 ), where the coupling between structural and func-

ional connectivity in this area has shown to be statistically lower than

hance when compared to a null model. The DMN instead, is the func-

ional system where the relationship between structure and function is

ore heterogeneous, as for some components we observed a coupled

odular organization, while for some other components we did not.

his could be due to the high number of circuits in which DMN par-

icipates and the variable dynamics it exhibits ( Buckner and DiNicola,

019; Vatansever et al., 2015; Zhang et al., 2016 ). In 𝑃 𝐶 2 , high entropy

alues between structural and functional communities are widespread in

he cortex, involving all the ICNs except for the somatosensory system.

his result fits recent studies where structural and functional connec-

ivity was found to be more consistent in the unimodal (sensory) cortex

ith respect to transmodal cortex ( Paquola et al., 2019; Preti and Van

e Ville, 2019 ). A possible interpretation for the general high-entropy in

 𝐶 2 could be linked to the fact that it is expressed at low- 𝜔 , where par-

itions are variable across subjects. As functional brain networks have

een shown to be subject-specific ( Finn et al., 2015; Gordon et al., 2017;

aumann et al., 2015 ), so will be their relationship with the underlying

tructural network. Thus, when the coupling among subjects is low (low-

 ), it is reasonable to expect a high variability between structural and

unctional partitions over different brain regions. 

All these findings suggest that the relationship between anatomical

nd functional modular organization is not well summarized by a single

patial or temporal scale. Different studies have been carried out fo-

using on a single-scale community structure and its relationship with

ognitive output, providing important insight into brain functions. How-

ver, our work, together with ( Betzel and Bassett, 2017; Betzel et al.,

019 ), suggests that multi-scale analyses are needed to gain a more

omprehensive understanding of the relation between brain structure,

unction, and cognition. It is worth specifying that, while we tackled

nd analyzed the multi-scale set of structural and functional partitions

hrough a PCA, there exist also other methods with which we can do

hat. For instance, gradient-based methods, or methods that explore the

ffect of one parameter at a time (e.g., averaging the others) can be used

s an alternative. 
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.2. Methodological innovation 

Multi-layer modularity optimization is a valuable instrument to track

he topological organization across instances of a multi-layer network. It

xploits a resolution parameter that regulates nodes coupling across lay-

rs. Previous works pointed out how his backbone can be easily modified

o address specific research questions ( Zamani Esfahlani et al., 2021 ),

nd different efforts have been made in trying to properly model inter-

ayer coupling (e.g. ( Amelio and Tagarelli, 2017; Di Plinio and Ebisch,

022; Vaiana et al., 2019 )). In this work we extended the classical multi-

ayer modularity maximization framework to address a long-standing

uestion in neuroscience: what is the relationship between anatomical

nd functional modular organization and how this relationship is ex-

ressed across different individuals? Exploiting the flexibility of mod-

larity optimization, we built a modularity matrix that contains multi-

odal and multi-subject networks contemporaneously. The advantage

f this method consists of having communities matched across layers,

epresenting either individuals and type of connectivity. In this way,

t allows a straightforward analysis of the modular structure: to get

n estimate of whether communities are the same across connection

odality and/or subjects, one can trivially compare community labels,

ithout the need for additional heuristic. Previous studies already used

he multi-layer framework ( De Domenico, 2017; Vaiana and Muldoon,

018 ) to track communities across subjects ( Betzel et al., 2019 ), time

 Baum et al., 2017; Betzel et al., 2017; Braun et al., 2015; Shine et al.,

016 ), frequency ( Puxeddu et al., 2021b ), learning paradigms ( Bassett

t al., 2011; Gerraty et al., 2018 ), tasks ( Cole et al., 2014 ) clinical co-

orts ( He et al., 2018 ), or to model brain dynamics ( Khambhati et al.,

018 ). Here, for the first time, thanks to the proposed extension, we

ould observe how the modular structure reorganizes across two dis-

inct directions, that in our case were subjects and connection modality.

Ultimately, where is the novelty of our approach? Why it is use-

ul? And why would we want a multi-modal, multi-subject model? The

ain novelty lies in that it allows for a straightforward comparison of

he modular structure across multiple domains (in our case subjects and

onnectivity modality). Not only this is useful for discovery purposes

i.e. the investigation of structure-function relationship in the healthy

rain), but also it could be applied in context with high clinical rele-

ance, e.g. in clinical populations, where features of the relationships

etween structure and function can be used as biomarkers. An exam-

le could be a structure-function investigation in stroke patients, where

natomical connectivity is damaged and the way its relationship with

unctional connectivity mutates after the stroke event is crucial for reha-

ilitation purposes. Furthermore, one could also consider a multi-modal

nalysis across different tasks or cognitive states, where we might ex-

ect a variation in the structure-function coupling. Thus, this framework

pens the door to new studies in which multiple co-occurrent factors can

e taken into account in the analysis of the human brain topological

rganization. In general, more multi-layer approaches are needed to in-

orporate multiple channels of connectivity, to obtain a more thorough

nowledge on the brain functioning. 

Another important methodological aspect regards how we treated

tructural and functional matrices before incorporating them into the

odularity matrix. In fact, it is good practice building multi-layer net-

orks where layers are made of comparable weights, otherwise lay-

rs with higher weights may impact excessively the modularity opti-

ization and thus the communities estimates. It is worth noticing that

tructural and functional networks are two distinct mathematical ob-

ects. A structural network is a sparse matrix with only positive weights,

hile a functional network is a full correlation matrix with both posi-

ive and negative weights. To overcome this difference, we converted

tructural matrices into structural correlation matrices. In this way, both

unctional and structural networks could be entered in the modularity

atrix as similarity matrices, with weights falling in the same range,

ithout running the risk of having one dragging the other in the com-

unity detection. This conversion also allowed us to use the same null
12 
odel in the modularity optimization, for both structural and functional

ayers. 

Our transformation of anatomical networks also helped us in mitigat-

ng the differences between structural and functional networks in terms

f inter-hemispheric connections. Notably, inter-hemispheric connec-

ions are difficult to reconstruct in structural networks, and are stronger

n the functional networks, above all between homological brain areas.

 sensitivity analysis carried out running our model on a single hemi-

phere led to analogous results in terms of how the modes of SC-FC

ariability are embedded in the parameter space. 

Finally, we want to point out that our computing the pairwise corre-

ation between rows of structural matrices (to obtain correlation matri-

es) is similar to the computation of the matching index ( Hilgetag et al.,

002 ), which captures the overlap of connection patterns for each pair

f vertices. This index has been widely employed in the recent net-

ork neuroscience literature, for instance to study connection finger-

rint ( Sporns et al., 2007 ), build generative models ( Betzel et al., 2016 ),

r predict functional connectivity patterns from measures of network

ommunication ( Goñi et al., 2014 ). Another way to handle structural

etworks in the landscape of structure-function studies, is to trans-

orm them into communication matrices. Interestingly, in a recent work

 Seguin et al., 2022 ), the authors showed that diffusion-based models

elp in approximating the functional modular organization better than

outing models based on path efficiency. 

.3. Technical considerations and limitations 

In this study we focused on a specific kind on communities, i.e. mod-

les, that are defined upon an assortative criterium ( Girvan and New-

an, 2002 ). It is well established that they well represent the brain

etworks organization ( Sporns and Betzel, 2016 ), promoting states of

egregation and integration ( Fukushima et al., 2018 ), necessary for

n efficient brain functioning ( Wig, 2017 ). However, brain networks

an also present different kind of organizations, based for example on

ore-periphery structure, disassortative communities or diffusion mod-

ls ( Betzel et al., 2018; Faskowitz and Sporns, 2020; Faskowitz et al.,

018; Newman, 2012 ). Recent studies started to explore different levels

f brain networks organization ( Faskowitz et al., 2020 ), with overlap-

ing modules, so that future advancements could extend these efforts

oward a multi-layer modeling. Furthermore, modularity maximization

s not the only way, nor the best one, to find assortative communities in

etworks. However, as discussed in ( Zamani Esfahlani et al., 2021 ), it is

 useful and flexible tool to address specific questions of neuroscience,

ike the structure-function relationship, in a principled manner. 

All the comparisons between structural and functional partitions, or

mong subjects, have been made through the Variation of Information

nd Entropy. We have chosen Variation of Information in line with pre-

iously mentioned studies based on modularity optimization, even if

here are a number of indices that can be used alternatively ( Gates et al.,

019 ). Moreover, we used Entropy because it provides both global and

ode-level scores of similarity between partitions, making it easy to lo-

alize changes of modular structure in the brain cortex. 

Finally, a limitation of extended multi-layer optimization frame-

orks lies in their computational time. In fact, while in single-layer

etworks operations like modularity maximization are made on a mod-

larity matrix whose dimension is given by the number of nodes, in

ulti-layer networks this same dimension is multiplied by the number

f layers. Our proposed approach, by doubling the dimension of the

ulti-layer modularity matrix, requires even more memory and compu-

ational power and thus, does not scale well for extremely large datasets.

sing a 100 nodes parcellation we optimized an already large modular-

ty matrix, of dimension 24,600 ([123 subjects × 2 modalities × 100

odes]). A single run of optimization of this dataset requires 7.3s on a

aptop with an i7 processor and RAM 16GB. Using a 200 nodes parcella-

ion, doubling the network dimension, requires 21s. This computational

ime must be multiplied by the number of combinations of resolution pa-
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ameters (in our case we had [50 × 50 × 50] combinations). Small tricks

an help us improve computational time. For instance, one can handle

he modularity matrix as a function instead of as an object ( Jutla et al.,

011 ), use parallel computing, or start the optimization by planting a

eed partition (if there is a hypothesis a-priori). However, it is impor-

ant to bear in mind that the computational cost does not scale linearly

ith the size of the modularity matrix, so even with these little tricks, a

ser should expect a heavy computational time and extensive memory

sage. 

.4. Future advances 

There exists an increasing body of literature bringing attention to

he influence of the brain network architecture on cognition and be-

avior ( Bressler and Menon, 2010; McIntosh, 1999; Mi š i ć and Sporns,

016 ), and previous studies have shown that structure-function rela-

ionship and human behavior are also related ( Medaglia et al., 2018 ).

oreover, structure-function relationship characterizes subjects individ-

ality ( Griffa et al., 2021 ). In this work, we propose as a supplemen-

al investigation a preliminary analysis of how measures derived from

our different cognitive assessments can be associated to the five modes

f variability between structural and functional modular organization

section 9 of Supplementary Material). We observed that a relationship

xists, and it is scale-dependent. Indeed, across the five principal compo-

ents, most of the brain regions showed different patterns of correlation

etween SC-FC community entropy and IQ-based measures. Notably,

he DMN is the subsystem whose patterns of correlations vary the least,

aintaining always a positive correlation between IQ and its entropy

cross structure and function. 

However, we only presented a proof-of-concept analyses to relate

ulti-scale partition information to cognitive assessments. To conclu-

ively establish such relationships would likely require much larger sam-

le sizes ( Marek et al., 2022 ) and the application of additional tests and

ethodologies ( Wu et al., 2021 ). For these reasons, we presented this

art of the work without drawing strong conclusions (and we also in-

ite the reader to make the same). Rather, we illustrated brain-wide

atterns at different scales, proving that our proposed methodology,

y preserving single-subject information while allowing the exploration

long a third dimension, could be useful in future studies to properly in-

estigate brain-behavior associations. Furthermore, in these studies, the

agnitude of the correlation between network topology and behavioral

ndices can be used to restrict the space of investigation to only those

arameter combinations that lead to the most fruitful associations. This

ould be an alternative to the PCA analysis that we carried out. 

Another direction for further investigations, could be analyzing how

he relationship between structural and functional topology relates to

ttributes of the modular structure. For instance, we made a prelimi-

ary analysis in which we linked measures of segregation and integra-

ion to the cross-modality entropy (Supplementary Material, section 8).

hat we found is that a relationship between all these measures exists,

nd subjects with highly segregated functional networks tend to have

 weaker coupling between structural and functional topology. Again,

e want to emphasize that these relationships can be investigated only

ith our extended model, that allows for a simultaneous tracking of

nter-subject and inter-modality features. 

Finally, we want to highlight that our focus was on a restricted cat-

gory of participants, that is healthy adults. Future works could apply

he proposed methods to clinical cohorts, to investigate if and how the

elationship between structure and function changes with diseases. To

o that, there exist different possible strategies. For instance, one could

nclude structural and functional networks from patients and controls in

he same structure-function modularity matrix, or build two modularity

atrices, one for each category. Then, the next steps would be including

 local entropy analysis to see how structural and functional topological

rganization varies in different brain regions within and between the

wo cohorts. In this case, entropy profiles could be used as prognostic
13 
ndices, or to predict clinical outcomes, if clinical scales are available.

hese indices could be validated through different permutation-based

ull models, e.g., by randomly assigning participants to cohorts, ran-

omizing node order so that node i is connected to 𝑗 ≠ 𝑖 across layers,

r by randomly coupling structural and functional matrices from dif-

erent subjects. Using these approaches, we can generate null entropy

easures that can subsequently be compared against the observed en-

ropy scores. 

Ultimately, the framework we propose can be used in lifespan studies

r could be further extended by including time-varying or task-specific

unctional matrices, instead of single resting-state ones. This would al-

ow linking different dynamic states to their underlying anatomical sub-

trate. 

. Conclusion 

In conclusion, we developed a novel multi-layer framework able

o incorporate multiple modes of connectivity, so that we could quan-

ify how much the network modular structure varies across connection

odality and subjects simultaneously. We investigated the relationship

etween structural and functional brain networks modular organization,

nd how it is shaped across subjects and at different spatial scales. While

onfirming previous findings on specific brain areas, our results pro-

ide also evidence that these relationships are recapitulated by scale-

ependent modes of variability. Overall, this work not only increases

he state-of-the-art methods and knowledge about structure-function re-

ationship, but also enables new analysis that can be done to compre-

ensively map the human brain networks organization across multiple

omains. 

ode availability 

MATLAB code to build the multi-modal and multi-subject network

nd run the extended modularity optimization is available at https://

ithub.com/mariagraziaP/multimodal _ multisubject _ modularity . 
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